Advertisement

The Future of Cartilage Repair

  • Damir Hudetz
  • Željko Jeleč
  • Eduard Rod
  • Igor Borić
  • Mihovil Plečko
  • Dragan Primorac
Chapter
Part of the Europeanization and Globalization book series (EAG, volume 5)

Abstract

Articular cartilage is a hyaline cartilage 2–4 mm thick. It is composed of 95% of dense extracellular matrix (ECM) and 5% of highly specialized cells called chondrocytes. Because of its avascular, aneural and alymphatic state, it has a limited repair potential. Articular cartilages’ main function is to provide smooth, lubricated surface for low friction articulation while minimizing the stress and strains on the matrix. Articular cartilage could be damaged by normal wear and tear or injury and it can cause severe pain, inflammation and some degree of disability. Its management consist of pharmacological (acetaminophen, NSAID, salicylate, selective COX-2 inhibitors or opioids) and non-pharmacological therapies. Non-pharmacological treatment includes physical therapy and decreasing the load in the joint by modifying patient’s habits. A new class of agents (symptomatic or disease modifying osteoarthritic drugs (S/DMOADs) including glucosamine and chondroitin sulfate is receiving wide publicity. At the same time, numerous published reports advising the use of hyaluronic acid injections: viscosupplementation in patients with symptomatic osteoarthritis. Operative treatment includes different surgical debridement and microfracture techniques, osteochondral autograft transfers, osteochondral allograft transplantation, etc. New techniques and concepts are being developed not only to treat damaged or diseased joint cartilage but also to find ways of achieving regeneration to normal cartilage that will give long-lasting improvements and allow patients to return to a fully active lifestyle. Nevertheless, as two stage procedures involving cell culture are expensive and cumbersome, there is an increasing push towards a single stage stem cell treatment. Currently, there are a number of new methods with cartilage repair aim, including autologous chondrocyte implantation (ACI), matrix-induced autologous chondrocyte implantation (MACI), intra-articular administration of autologous microfragmented fat tissue with Ad-MSCs, etc. In this chapter, we discuss some current treatments and the emerging strategies/techniques employed by researchers and physicians thriving to repair articular cartilage through biological means.

Keywords

Articular cartilage Osteoarthritis Pharmacological treatment Viscosupplementation Microfractures Cell-based therapy for cartilage Osteochondral grafts 

References

  1. Abramson SB (2008) Osteoarthritis and nitric oxide. Osteoarthr Cartil 16(Suppl 2):S15–S20.  https://doi.org/10.1016/s1063-4584(08)60008-4 CrossRefGoogle Scholar
  2. Aigner T, Schmitz N (2011) Pathogenesis and pathology of osteoarthritis. In: Hochberg M, Silman A, Smolen J, Weinblatt M, Weisman M (eds) Rheumatology, 5th edn. Mosby Elsevier, Philadelphia, pp 1741–1759CrossRefGoogle Scholar
  3. Altman R, Manjoo A, Fierlinger A, Niazi F, Nicholls M (2015) The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord 16:321CrossRefGoogle Scholar
  4. Amano K, Li AK, Pedoia V, Koff MF, Krych AJ, Link TM et al (2017) Effects of surgical factors on cartilage can be detected using quantitative magnetic resonance imaging after anterior cruciate ligament reconstruction. Am J Sports Med 45(5):1075–1084CrossRefGoogle Scholar
  5. American Academy of Orthopaedic Surgeons (2013) Treatment of osteoarthritis of the knee, 2nd edn. American Academy of Orthopaedic Surgeons, RosemontGoogle Scholar
  6. Apprich S, Trattnig S, Welsch GH, Noebauer-Huhmann IM, Sokolwski M, Hirschfeld C et al (2012) Assessment of articular cartilage repair tissue after matrix-associated autologous chondrocyte transplantation or the microfracture technique in the ankle joint using diffusion-weighted imaging at 3 Tesla. Osteoarthr Cartil 20(7):703–711CrossRefGoogle Scholar
  7. Arroll B, Goodyear-Smith F (2004) Corticosteroid injections for osteoarthritis of the knee: meta-analysis. BMJ 328(7444):869CrossRefGoogle Scholar
  8. Bartlett W, Skinner JA, Gooding CR, Carrington RWJ, Flanagan AM, Briggs TWR, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. Bone Joint J 87(5):640–645Google Scholar
  9. Bassleer C, Rovati L, Franchimont P (1998) Stimulation of proteglycan production by glucosamine sulfate in chondrocite isolated from human osteoarthritic cartilage in vitro. Osteoarthr Cartil 6(6):427–434CrossRefGoogle Scholar
  10. Bellamy N, Campbell J, Welch V, Gee TL, Bourne R, Wells GA (2006) Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev (2): CD005321.  https://doi.org/10.1002/14651858.CD005321.pub2
  11. Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87(1):77–95CrossRefGoogle Scholar
  12. Binks DA, Hodgson RJ, Ries ME, Foster RJ, Smye SW, McGonagle D, Radjenovic A (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 86(1023):20120163CrossRefGoogle Scholar
  13. Bobic V (2000) ICRS articular cartilage imaging committee. ICRS MR imaging protocol for knee articular cartilage. International Cartilage Repair Society, Wetzikon, Switzerland, p 12Google Scholar
  14. Bonnet CS, Walsh DA (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44(1):7–16.  https://doi.org/10.1093/rheumatology/keh344 CrossRefGoogle Scholar
  15. Borrione P, Di Gianfrancesco A, Pereira MT, Pigozzi F (2010) Platelet-rich plasma in muscle healing. Am J Phys Med Rehabil 89(10):854–861CrossRefGoogle Scholar
  16. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85(suppl 2):58–69CrossRefGoogle Scholar
  17. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895CrossRefGoogle Scholar
  18. Burrage PS, Brinckerhoff CE (2007) Molecular targets in osteoarthritis: metalloproteinases and their inhibitors. Curr Drug Targets 8(2):293–303CrossRefGoogle Scholar
  19. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D et al (2001) Protocol issues for delayed Gd (DTPA) 2–-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41CrossRefGoogle Scholar
  20. Camp CL, Stuart MJ, Krych AJ (2014) Current concepts of articular cartilage restoration techniques in the knee. Sports Health 6(3):265–273CrossRefGoogle Scholar
  21. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230CrossRefGoogle Scholar
  22. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15CrossRefGoogle Scholar
  23. Centeno CJ, Schultz JR, Cheever M, Robinson B, Freeman M, Marasco W (2010) Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther 5(1):81–93CrossRefGoogle Scholar
  24. Chan PS, Caron JP, Orth MW (2006) Short-term gene expression changes in cartilage explants stimulated with interleukin beta plus glucosamine and chondroitin sulfate. J Rheumatol 33:1329–1340Google Scholar
  25. Choi YS, Potter HG, Chun TJ (2008) MR imaging of cartilage repair in the knee and ankle. Radiographics 28(4):1043–1059CrossRefGoogle Scholar
  26. Clancy R (1999) Nitric oxide alters chondrocyte function by disrupting cytoskeletal signaling complexes. Osteoarthr Cartil 7(4):399–400.  https://doi.org/10.1053/joca.1998.0223 CrossRefGoogle Scholar
  27. Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM et al (2006) Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med 354(8):795–808CrossRefGoogle Scholar
  28. Davies-Tuck ML, Wluka AE, Forbes A, Wang Y, English DR, Giles GG et al (2010) Development of bone marrow lesions is associated with adverse effects on knee cartilage while resolution is associated with improvement-a potential target for prevention of knee osteoarthritis: a longitudinal study. Arthritis Res Ther 12(1):1CrossRefGoogle Scholar
  29. Dieppe P (2011) Developments in osteoarthritis. Rheumatology 50(2):245–247CrossRefGoogle Scholar
  30. Dougados M (2000) Sodium hyaluronate therapy in osteoarthritis: arguments for a potential beneficial structural effect. Semin Arthritis Rheum 30(2 Suppl 1):19–25CrossRefGoogle Scholar
  31. du Souich P, García AG, Vergés J, Montell E (2009) Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med 13(8a):1451–1463CrossRefGoogle Scholar
  32. Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P (2003) Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 48(11):3118–3129.  https://doi.org/10.1002/art.11303 CrossRefGoogle Scholar
  33. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232(2):592–598CrossRefGoogle Scholar
  34. Duvvuri U, Charagundla SR, Kudchodkar SB, Kaufman JH, Kneeland JB, Rizi R et al (2001) Human knee: in vivo T1ρ-weighted MR imaging at 1.5 T—preliminary experience. Radiology 220(3):822–826CrossRefGoogle Scholar
  35. Ehrenfest DMD, Andia I, Zumstein MA, Zhang CQ, Pinto NR, Bielecki T (2014) Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J 4(1):3CrossRefGoogle Scholar
  36. Elmorsy S, Funakoshi T, Sasazawa F, Todoh M, Tadano S, Iwasaki N (2014) Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model. Osteoarthr Cartil 22(1):121–127CrossRefGoogle Scholar
  37. Fan Z, Bau B, Yang H, Aigner T (2004) IL-1beta induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK, p38 and NFkappaB signaling pathways. Cytokine 28(1):17–24.  https://doi.org/10.1016/j.cyto.2004.06.003 CrossRefGoogle Scholar
  38. Fanghänel J, Pera F, Anderhuber F, Nitsch R (2009) Waldeyerova anatomija čovjeka. Golden marketing - Tehnička knjiga, ZagrebGoogle Scholar
  39. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S et al (2003) Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 139(5_Part_1):330–336CrossRefGoogle Scholar
  40. Filardo G, Kon E, Di Martino A, Di Matteo B, Merli ML, Cenacchi A et al (2012) Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord 13(1):229CrossRefGoogle Scholar
  41. Forsey R, Fisher J, Thompson J, Stone M, Bell C, Ingham E (2006) The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials 27(26):4581–4590CrossRefGoogle Scholar
  42. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274Google Scholar
  43. Gray ML, Burstein D, Kim YJ, Maroudas A (2008) 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res 26(3):281–291CrossRefGoogle Scholar
  44. Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M et al (2009) Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods 15(4):647–658CrossRefGoogle Scholar
  45. Guermazi A, Roemer FW, Alizai H, Winalski CS, Welsch G, Brittberg M, Trattnig S (2015) State of the art: MR imaging after knee cartilage repair surgery. Radiology 277(1):23–43CrossRefGoogle Scholar
  46. Hangody L, Vásárhelyi G, Hangody LR, Sükösd Z, Tibay G, Bartha L, Bodó G (2008) Autologous osteochondral grafting—technique and long-term results. Injury 39(1):32–39CrossRefGoogle Scholar
  47. Harnly HW (2007) Microfracture: indications, technique, and results. Instr Course Lect 56:419–428Google Scholar
  48. Heijink A, Gomoll AH, Madry H, Drobnič M, Filardo G, Espregueira-Mendes J, Van Dijk CN (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20(3):423–435CrossRefGoogle Scholar
  49. Hesper T, Hosalkar HS, Bittersohl D, Welsch GH, Krauspe R, Zilkens C, Bittersohl B (2014) T2∗ mapping for articular cartilage assessment: principles, current applications, and future prospects. Skelet Radiol 43(10):1429–1445CrossRefGoogle Scholar
  50. Hiraoka N, Takahashi Y, Arai K, Honjo S, Nakawaga S, Tsuchida S et al (2009) Hyaluronan and intermittent hydrostatic pressure synergistically suppressed MMP-13 and Il-6 expressions in osteoblasts from OA subchondral bone. Osteoarthr Cartil 17(1):S97CrossRefGoogle Scholar
  51. Hochberg MC, Zhan M, Langenberg P (2008) The rate of decline of joint space width in patients with osteoarthritis of the knee: a systematic review and meta-analysis of randomized placebo-controlled trials of chondroitin sulfate. Curr Med Res Opin 24:3029–3035CrossRefGoogle Scholar
  52. Holtzman DJ, Theologis AA, Carballido-Gamio J, Majumdar S, Li X, Benjamin C (2010) T1ρ and T2 quantitative magnetic resonance imaging analysis of cartilage regeneration following microfracture and mosaicplasty cartilage resurfacing procedures. J Magn Reson Imaging 32(4):914–923CrossRefGoogle Scholar
  53. Hudetz D, Borić I, Rod E, Jeleč Ž, Radić A, Vrdoljak T et al (2017) The effect of intra-articular injection of autologous microfragmented fat tissue on proteoglycan synthesis in patients with knee osteoarthritis. Genes 8(10):270CrossRefGoogle Scholar
  54. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP et al (2006) Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 54(5):1529–1535CrossRefGoogle Scholar
  55. Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T (2004) Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum 50(2):516–525CrossRefGoogle Scholar
  56. Jüni P, Hari R, Rutjes AWS, Fischer R, Silletta MG, Reichenbach S, da Costa BR (2015) Intra‐articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev 22(10):CD005328.  https://doi.org/10.1002/14651858.CD005328.pub3 CrossRefGoogle Scholar
  57. Junqueira LC, Carneiro J (2005) Osnove histologije. Školska knjiga, ZagrebGoogle Scholar
  58. Kobayashi K, Matsuzaka S, Yoshida Y, Miyauchi S, Wada Y, Moriya H (2004) The effects of intraarticularly injected sodium hyaluronate on levels of intact aggrecan and nitric oxide in the joint fluid of patients with knee osteoarthritis. Osteoarthr Cartil 12(7):536–542CrossRefGoogle Scholar
  59. Koff MF, Amrami KK, Kaufman KR (2007) Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis. Osteoarthr Cartil 15(2):198–204CrossRefGoogle Scholar
  60. Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE (2015) Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 23(5):1308–1316CrossRefGoogle Scholar
  61. Koller U, Apprich S, Schmitt B, Windhager R, Trattnig S (2017) Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging. Int Orthop 41(5):969–974CrossRefGoogle Scholar
  62. Kon E, Buda R, Filardo G, Di Martino A, Timoncini A, Cenacchi A et al (2010) Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 18(4):472–479.  https://doi.org/10.1007/s00167-009-0940-8 CrossRefGoogle Scholar
  63. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P et al (2006a) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22(11):1180–1186CrossRefGoogle Scholar
  64. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Südkamp N (2006b) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil 14(11):1119–1125CrossRefGoogle Scholar
  65. Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V et al (2012) Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthr Cartil 20(5):357–363CrossRefGoogle Scholar
  66. Kurkijärvi JE, Mattila L, Ojala RO, Vasara AI, Jurvelin JS, Kiviranta I, Nieminen MT (2007) Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cartil 15(4):372–378CrossRefGoogle Scholar
  67. Lajeunesse D, Delalandre A, Martel-Pelletier J, Pelletier J-P (2003) Hyaluronic acid reverses the abnormal synthetic activity of human osteoarthritic subchondral bone osteoblasts. Bone 33(4):703–710CrossRefGoogle Scholar
  68. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010) Effect of glucosamine or chondroitin sulfate on the osteoarthritis progression: a meta-analysis. Rheumatol Int 30:357–363CrossRefGoogle Scholar
  69. Leeb BF, Schweitzer H, Montag K, Smolen JS (2000) A metaanalysis of chondroitin sulfate in the treatment of osteoarthritis. J Rheumatol 27:205–211Google Scholar
  70. Lin CS, Lue TF (2013) Defining vascular stem cells. Stem Cells Dev 22(7):1018–1026CrossRefGoogle Scholar
  71. Link TM, Neumann J, Li X (2017) Prestructural cartilage assessment using MRI. J Magn Reson Imaging 45(4):949–965CrossRefGoogle Scholar
  72. Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R et al (2013) A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 9(1):30CrossRefGoogle Scholar
  73. Loeser RF (2003) Systemic and local regulation of articular cartilage metabolism: where does leptin fit in the puzzle? Arthritis Rheum 48(11):3009–3012.  https://doi.org/10.1002/art.11315 CrossRefGoogle Scholar
  74. Lopes Junior OV, Inacio AM (2013) Use of glucosamine and chondroitin to treat osteoarthritis: a review of the literature. Rev Bras Ortop 48(4):300–306CrossRefGoogle Scholar
  75. Lu HT, Sheu MT, Lin YF, Lan J, Chin YP, Hsieh MS et al (2013) Injectable hyaluronic-acid-doxycycline hydrogel therapy in experimental rabbit osteoarthritis. BMC Vet Res 9:68CrossRefGoogle Scholar
  76. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1):16–23CrossRefGoogle Scholar
  77. Marmotti A, Rossi R, Castoldi F, Roveda E, Michielon G, Peretti GM (2015) PRP and articular cartilage: a clinical update. Biomed Res Int 2015:542502CrossRefGoogle Scholar
  78. Martel-Pelletier J, Kwan Tat S, Pelletier JP (2010) Effects of chondroitin sulfate in the pathophysiology of the osteoarthritic joint: a narrative review. Osteoarthr Cartil 18(Suppl 1):S7–S11CrossRefGoogle Scholar
  79. McCarty M (1994) The neglect of glucosamine as treatment for osteoarthritis. A personal perspective. Med Hypotheses 42(5):323–327CrossRefGoogle Scholar
  80. McDonough AL (1982) Effects of corticosteroids on articular cartilage: a review of the literature. Phys Ther 62(6):835–839CrossRefGoogle Scholar
  81. Meenagh GK, Patton J, Kynes C, Wright GD (2004) A randomised controlled trial of intra-articular corticosteroid injection of the carpometacarpal joint of the thumb in osteoarthritis. Ann Rheum Dis 63(10):1260–1263CrossRefGoogle Scholar
  82. Miller BS, Steadman JR, Briggs KK, Rodrigo JJ, Rodkey WG (2004) Patient satisfaction and outcome after microfracture of the degenerative knee. J Knee Surg 17(01):13–17CrossRefGoogle Scholar
  83. Mlynarik V, Trattnig S, Huber M, Zembsch A, Imhof H (1999) The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. J Magn Reson Imaging 10(4):497–502CrossRefGoogle Scholar
  84. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48(12):3464–3474CrossRefGoogle Scholar
  85. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116CrossRefGoogle Scholar
  86. Neogi T, Felson D, Niu J, Lynch J, Nevitt M, Guermazi A et al (2009) Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the multicenter osteoarthritis study. Arthritis Care Res 61(11):1539–1544CrossRefGoogle Scholar
  87. Osiris Therapeutics Announces Positive One Year (2007) Data from Chondrogen Trial for Knee Repair, Osiris Therapeutics. Inc., Ref. Type: Internet CommunicationGoogle Scholar
  88. Paschos NK, Sennett ML (2017) Update on mesenchymal stem cell therapies for cartilage disorders. World J Orthop 8(12):853CrossRefGoogle Scholar
  89. Peyron JG, Altman R (1992) Osteoarthritis: diagnosis and management. In: Howell DS, Moskowitz RW, Goldberg VM, Mankin HJ (eds) The epidemiology of osteoarthritis, vol 2. Saunders, Philadelphia, p 15Google Scholar
  90. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefGoogle Scholar
  91. Potter HG, Foo LF (2006) Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 34(4):661–677CrossRefGoogle Scholar
  92. Primorac D (1995) Reduced type II collagen mRNA in nanomelic cultured chondrocytes: an example of extracellular matrix/collagen feedback regulation? Croat Med J 36:85–92Google Scholar
  93. Primorac D, Stover ML, Clark SH, Rowe DW (1994) Molecular basis of nanomelia, a heritable chondrodystrophy of chicken. Matrix Biol 14(4):297–305CrossRefGoogle Scholar
  94. Raya JG (2015) Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging 41(6):1487–1504CrossRefGoogle Scholar
  95. Raya JG, Melkus G, Adam-Neumair S, Dietrich O, Mützel E, Reiser MF et al (2013) Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology 266(3):831–841CrossRefGoogle Scholar
  96. Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O et al (2001) Long term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo controlled clinical trial. Lancet 357(9252):251–256CrossRefGoogle Scholar
  97. Richmond J, Hunter D, Irrgang J et al (2009) Treatment of osteoarthritis of the knee (nonarthroplasty). J Am Acad Orthop Surg 17:591–600CrossRefGoogle Scholar
  98. Richy F, Bruyere O, Ethgen O, Cucherat M, Henrotin Y, Reginster JY (2003) Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis: a comprehensive meta-analysis. Arch Intern Med 163(13):1514–1522CrossRefGoogle Scholar
  99. Roman-Blas JA, Herrero-Beaumont G (2014) Targeting subchondral bone in osteoporotic osteoarthritis. Arthritis Res Ther 16(6):494.  https://doi.org/10.1186/s13075-014-0494-0 CrossRefGoogle Scholar
  100. Ronca F, Palmieri L, Panicucci P, Ronca G (1998) Anti-inflammatory activity of chondroitin sulfate. Osteoarthr Cartil 6(Suppl A):14–21CrossRefGoogle Scholar
  101. Sakkas LI, Platsoucas CD (2007) The role of T cells in the pathogenesis of osteoarthritis. Arthritis Rheum 56(2):409–424.  https://doi.org/10.1002/art.22369 CrossRefGoogle Scholar
  102. Sasaki A, Sasaki K, Konttinen YT, Santavirta S, Takahara M, Takei H et al (2004) Hyaluronate inhibits the interleukin-1beta-induced expression of matrix metalloproteinase (MMP)-1 and MMP-3 in human synovial cells. Tohoku J Exp Med 204(2):99–107CrossRefGoogle Scholar
  103. Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J et al (2011) A prospective multicenter study on the outcome of type I collagen hydrogel–based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565CrossRefGoogle Scholar
  104. Schreiner MM, Mlynarik V, Zbýň Š, Szomolanyi P, Apprich S, Windhager R, Trattnig S (2017) New technology in imaging cartilage of the ankle. Cartilage 8(1):31–41CrossRefGoogle Scholar
  105. Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D et al (2012) Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 68(2):588–594CrossRefGoogle Scholar
  106. Sohn DH, Lottman LM, Lum LY, Kim SG, Pedowitz RA, Coutts RD, Sah RL (2002) Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Relat Res 394:254–262CrossRefGoogle Scholar
  107. Stannus O, Jones G, Cicuttini F, Parameswaran V, Quinn S, Burgess J, Ding C (2010) Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr Cartil 18(11):1441–1447.  https://doi.org/10.1016/j.joca.2010.08.016 CrossRefGoogle Scholar
  108. Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391:S362–S369CrossRefGoogle Scholar
  109. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5):477–484CrossRefGoogle Scholar
  110. Steadman JR, Rodkey WG, Briggs KK (2010) Microfracture: its history and experience of the developing surgeon. Cartilage 1(2):78–86CrossRefGoogle Scholar
  111. Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173CrossRefGoogle Scholar
  112. Tat SK, Pelletier JP, Vergés J, Lajeunesse D, Montell E, Fahmi H et al (2007) Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res Ther 9:R117CrossRefGoogle Scholar
  113. Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ (2012) The basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther 42(3):243–253CrossRefGoogle Scholar
  114. Towheed TE, Maxwell L, Judd MG et al (2006) Acetaminophen for osteoarthritis. Cochrane Database Syst Rev:D4257Google Scholar
  115. Trattnig S, Marlovits S, Gebetsroither S, Szomolanyi P, Welsch GH, Salomonowitz E et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: preliminary results. J Magn Reson Imaging 26(4):974–982CrossRefGoogle Scholar
  116. Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18(6):1251–1259CrossRefGoogle Scholar
  117. Trattnig S, Welsch GH, Juras V, Szomolanyi P, Mayerhoefer ME, Stelzeneder D et al (2010) 23Na MR imaging at 7 T after knee matrix–associated autologous chondrocyte transplantation preliminary results. Radiology 257(1):175–184CrossRefGoogle Scholar
  118. Tremolada C, Colombo V, Ventura C (2016) Adipose tissue and mesenchymal stem cells: state of the art and Lipogems® technology development. Curr Stem Cell Rep 2(3):304–312CrossRefGoogle Scholar
  119. US Food and Drug Administration (2004) FDA Public Health Advisory: Safety of Vioxx. FDA, Silver Spring. Available at http://www.fdagov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm106274htm. 25 September 2015
  120. US Food and Drug Administration (2005) Information for Healthcare Professionals: Valdecoxib (marketed as Bextra). FDA, Silver Spring. Available at http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm124649.htm. 25 September 2015
  121. US Food and Drug Administration Information for Healthcare Professionals: Celecoxib (Marketed as Celebrex) (2005) FDA, Silver Spring. Available at http://www.fda.gov/Drugs/DrugSafety/Postmarket DrugSafetyInformationforPatientsandProviders/ucm124655.htm. 25 September 2015
  122. Uygur E, Kilic B, Demiroglu M, Ozkan K, Cift HT (2015) Subchondral bone and its role in osteoarthritis. Open J Orthopedics 5(11):355–360CrossRefGoogle Scholar
  123. van de Loo FA, Joosten LA, van Lent PL, Arntz OJ, van den Berg WB (1995) Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 38(2):164–172CrossRefGoogle Scholar
  124. Vega A, Martín-Ferrero MA, Del Canto F, Alberca M, García V, Munar A et al (2015) Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation 99(8):1681–1690CrossRefGoogle Scholar
  125. Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, Regatte RR (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30(3):606–614CrossRefGoogle Scholar
  126. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34(6):747CrossRefGoogle Scholar
  127. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S et al (2008a) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 247(1):154–161CrossRefGoogle Scholar
  128. Welsch GH, Mamisch TC, Hughes T, Zilkens C, Quirbach S, Scheffler K et al (2008b) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2∗ mapping of articular cartilage. Investig Radiol 43(9):619–626CrossRefGoogle Scholar
  129. Wildi L, Raynauld J, Martel-Pelletier J, Beaulieu A, Bessette L (2011) Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomized, double-blind, placebo-controlled pilot study using MRI. Ann Rheum Dis 70:982–989CrossRefGoogle Scholar
  130. Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L et al (2004) Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol 182(1):167–172CrossRefGoogle Scholar
  131. Wluka AE, Hanna F, Davies-Tuck M, Wang Y, Bell RJ, Davis SR et al (2009) Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann Rheum Dis 68(6):850–855CrossRefGoogle Scholar
  132. Young AA, Stanwell P, Williams A, Rohrsheim JA, Parker DA, Giuffre B, Ellis AM (2005) Glycosaminoglycan content of knee cartilage following posterior cruciate ligament rupture demonstrated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC): a case report. J Bone Joint Surg Am 87(12):2763–2767CrossRefGoogle Scholar
  133. Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, Nissen C (2009) A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee results of the study of the treatment of articular repair (STAR) clinical trial. Am J Sports Med 37(1):42–55CrossRefGoogle Scholar
  134. Zbýň Š, Stelzeneder D, Welsch GH, Negrin LL, Juras V, Mayerhoefer ME et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthr Cartil 20(8):837–845CrossRefGoogle Scholar
  135. Zeng C, Wei J, Li H, Wang Y, Xie D, Yang T et al (2015) Effectiveness and safety of glucosamine, chondroitin, the two in combination, or celecoxib in the treatment of osteoarthritis of the knee. Sci Rep 5:16827CrossRefGoogle Scholar
  136. Zhang W, Jones A, Doherty M (2004) Does paracetamol (acetaminophen) reduce the pain of osteoarthritis? A meta-analysis of randomised controlled trials. Ann Rheum Dis 63:901–907CrossRefGoogle Scholar
  137. Zhang W, Moskowitz RW, Nuki G et al (2008a) OARSI recommendations for the management of hip and knee osteoarthritis, part I: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil 16:137–162CrossRefGoogle Scholar
  138. Zhang W, Moskowitz RW, Nuki G et al (2008b) OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil 16:137–162CrossRefGoogle Scholar
  139. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC et al (2013) Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19(6):704–712.  https://doi.org/10.1038/nm.3143 CrossRefGoogle Scholar
  140. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Damir Hudetz
    • 1
    • 2
    • 3
  • Željko Jeleč
    • 1
    • 3
  • Eduard Rod
    • 1
    • 3
  • Igor Borić
    • 1
    • 4
    • 5
  • Mihovil Plečko
    • 1
  • Dragan Primorac
    • 1
    • 3
    • 4
    • 6
    • 7
    • 8
    • 9
  1. 1.St. Catherine Specialty HospitalZagrebCroatia
  2. 2.Clinical Hospital “Sveti Duh”ZagrebCroatia
  3. 3.School of Medicine, JJ Strossmayer University of OsijekOsijekCroatia
  4. 4.School of Medicine, University of SplitSplitCroatia
  5. 5.School of Medicine, University of RijekaRijekaCroatia
  6. 6.Gen-InfoZagrebCroatia
  7. 7.Children’s Hospital SrebrnjakZagrebCroatia
  8. 8.Eberly College of Science, The Pennsylvania State University, University ParkState CollegeUSA
  9. 9.The Henry C. Lee College of Criminal Justice and Forensic SciencesUniversity of New HavenWest HavenUSA

Personalised recommendations