Personalized Medicine in Ophthalmology: Treatment of Total Limbal Stem Cell Deficiency with Autologous Ex Vivo Cultivated Limbal Epithelial Stem Cell Graft

  • Iva Dekaris
  • Mirna Tominac-Trcin
  • Nikica Gabrić
  • Budimir Mijović
  • Adi Pašalić
Part of the Europeanization and Globalization book series (EAG, volume 5)


Most of the blinding corneal diseases are treatable by corneal transplantation in which a corneal allograft is used. However, in severe corneal burns that often result in total limbal epithelial stem cell (LECS) deficiency, corneal transplantation alone is not feasible, as corneal graft in eyes without stem cells cannot survive. Total LESC deficiency is clinically characterized by growth of conjunctival tissue over the cornea, corneal neovascularization and opacification. It unfortunately affects mostly younger population. Two decades ago, it has been shown that a successful corneal graft in patients with corneal burns can only be performed as a second surgical act; namely only after transplantation of limbal stem cells cultivated ex vivo have restored a healthy anterior ocular surface. Cultivation of LESC ex vivo has been adopted as treatment of choice for such cases. Various carriers of LESC in vitro has been tested and clinically applied, such as fibrin, amniotic membrane and contact lens. LESC samples for cultivation in vitro can be autologous grafts harvested from the contralateral healthy eye (if only one eye has corneal burn), or allografts retrieved from a healthy relative or donor corneo-scleral rim. The most effective way of treatment is collection of healthy LESC from patient’s healthy eye, their multiplication ex vivo on certain carrier and final grafting of cultivated epithelial sheet on the diseased eye of the same patient. Transplantation of such LESC becomes a personalized ocular treatment as epithelial sheet of cells must be cultivated for each particular patient. Other sources of LESC for ex vivo cultures, such as allografts, are significantly less successful and has disadvantage that the patient must receive systemic immunosuppressive treatment with unwanted side-effects.


  1. Ahmad S, Stewart R, Yung S et al (2007) Differentiation of human embryonicstem cellsinto corneal epithelial-likecellsby in vitro replication of the corneal epithelialstemcell niche. Stem Cells 25(5):1145–1155CrossRefGoogle Scholar
  2. Bobba S, Chow S, Watson S et al (2015) Clinical outcomes of xeno-free expansion and transplantation of autologous ocular surface epithelial stem cells via contact lens delivery: a prospective case series. Stem Cell Res Ther 6:23. CrossRefGoogle Scholar
  3. Brzeszczynska J, Samuel K, Greenhough S et al (2014) Differentiation and molecular profiling ofhumanembryonicstemcell-derived corneal epithelialcells. Int J Mol Med 33(6):1597–1606. CrossRefGoogle Scholar
  4. Chen JJ, Tseng SC (1991) Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32(8):2219–2233Google Scholar
  5. Dekaris I, Gabrić N (2009) Preparation and preservation of amniotic membrane. Dev Ophthalmol 43:97–104CrossRefGoogle Scholar
  6. Dhamodaran K, Subramani M, Jeyabalan N et al (2015) Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: a comparative study with implications in transplantation medicine. Mol Vis 21:828–845. eCollection 2015Google Scholar
  7. Di Iorio E, Barbaro V, Ruzza A et al (2005) Isoforms of DeltaNp63 and the migration of ocularlimbalcellsin human corneal regeneration. Proc Natl Acad Sci U S A 102(27):9523–9528CrossRefGoogle Scholar
  8. Dobrowolski D, Orzechowska-Wylegala B, Wowra B et al (2015) Cultivated oral mucosa epithelium in ocular surface reconstruction in aniridia patients. Biomed Res Int 281870. CrossRefGoogle Scholar
  9. Dua HS, Joseph A, Shanmuganathan VA et al (2003) Stem cell differentiation and the effects of deficiency. Eye (London) 17(8):877–885CrossRefGoogle Scholar
  10. González S, Mei H, Nakatsu MN et al (2016) A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells. Stem Cell Res 16(2):358–364. CrossRefGoogle Scholar
  11. Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48(6):631–646CrossRefGoogle Scholar
  12. Ho JH, Ma WH, Tseng TC et al (2011) Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng A 17(1–2):255–266. CrossRefGoogle Scholar
  13. Holan V, Trosan P, Cejka C et al (2015) A comparative study of the therapeutic potential of mesenchymalstem cellsandlimbalepithelialstem cellsfor ocular surface reconstruction. Stem Cells Transl Med 4(9):1052–1063. CrossRefGoogle Scholar
  14. James SE, Rowe A, Ilari L et al (2001) The potential for eye bank limbal rings to generate cultured corneal epithelial allografts. Cornea 20(5):488–494CrossRefGoogle Scholar
  15. Kenyon KR, Tseng SC (1989) Limbalautograft transplantation for ocular surface disorders. Ophthalmology 96(5):709–722; discussion 722-3CrossRefGoogle Scholar
  16. Koizumi N, Inatomi T, Quantock AJ et al (2000) Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea 19(1):65–71CrossRefGoogle Scholar
  17. Lindberg K, Brown ME, Chaves HV et al (1993) Towards therapeutic application of ocular stem cells. Invest Ophthalmol Vis Sci 34(9):2672–2679Google Scholar
  18. López-Paniagua M, Nieto-Miguel T, de la Mata A et al (2016) Successful consecutive expansion oflimbalexplants using a biosafe culture medium under feeder layer-free conditions. Curr Eye Res 2:1–11Google Scholar
  19. Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. J Ophthalmol 86(4):463–471Google Scholar
  20. O’Callaghan AR, Morgan L, Daniels JT et al (2016) Human-derived feeder fibroblasts for the culture of epithelial cells for clinical use. J Tissue Eng Regen Med 11(6):529–543. CrossRefGoogle Scholar
  21. Pathak M, Cholidis S, Haug K et al (2013) Clinical transplantation of ex vivo expanded autologous limbal epithelial cells using a culture medium with human serum as single supplement: a retrospective case series. Acta Ophthalmol 91(8):769–775. CrossRefGoogle Scholar
  22. Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349(9057):990–993CrossRefGoogle Scholar
  23. Pellegrini G, Dellambra E, Golisano O et al (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A 98(6):3156–3161CrossRefGoogle Scholar
  24. Priya CG, Arpitha P, Vaishali S et al (2011) Adult human buccal epithelialstem cells: identification, ex-vivo expansion, and transplantation for corneal surface reconstruction. Eye (London) 25(12):1641–1649. CrossRefGoogle Scholar
  25. Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases withlimbalstem cell deficiency. Ophthalmology 102(10):1476–1485CrossRefGoogle Scholar
  26. Rama P, Bonini S, Lambiase A et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72(9):1478–1485CrossRefGoogle Scholar
  27. Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363(2):147–155. CrossRefGoogle Scholar
  28. Sangwan VS, Basu S, Vemuganti GK et al (2011) Clinicaloutcomes of xeno-free autologous cultivatedlimbalepithelial transplantation: a 10-year study. J Ophthalmol 95(11):1525–1529. CrossRefGoogle Scholar
  29. Schlötzer-Schrehardt U, Kruse FE (2005) Identification and characterization oflimbalstem cells. Exp Eye Res 81(3):247–264CrossRefGoogle Scholar
  30. Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986Google Scholar
  31. Schwab IR, Reyes M, Isseroff RR (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19(4):421–426CrossRefGoogle Scholar
  32. Shimazaki J, Aiba M, Goto E et al (2002) Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 109(7):1285–1290CrossRefGoogle Scholar
  33. Sidney LE, Branch MJ, Dua HS et al (2015) Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy 17(12):1706–1722. CrossRefGoogle Scholar
  34. Tominac Trcin M, Dekaris I, Mijović B, Bujić M, Zdraveva E, Dolenec T, Pauk-Gulić M, Primorac D, Crnjac J, Špoljarić B, Mršić G, Kuna K, Špoljarić D, Popović M (2016) Synthetic vs natural scaffolds for human limbal stem cells. Croat Med J 56(3):246–256CrossRefGoogle Scholar
  35. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343(2):86–93CrossRefGoogle Scholar
  36. Utheim TP (2015) Concise review: transplantation of cultured oral mucosal epithelial cells for treating limbal stem cell deficiency-current status and future perspectives. Stem Cell 33(6):1685–1695. CrossRefGoogle Scholar
  37. Zakaria N, Koppen C, Van Tendeloo V et al (2010) Standardized limbal epithelial stem cell graft generation and transplantation. Tissue Eng C Methods 16(5):921–927. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iva Dekaris
    • 1
  • Mirna Tominac-Trcin
    • 2
  • Nikica Gabrić
    • 1
  • Budimir Mijović
    • 3
  • Adi Pašalić
    • 1
  1. 1.Specialty Eye Hospital ‘Svjetlost’, Department of OphthalmologyUniversity of RijekaZagrebCroatia
  2. 2.Tissue Bank, University Department of Traumatology, University Hospital “Sestre Milosrdnice”ZagrebCroatia
  3. 3.Department of Basic Natural and Technical Sciences, Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations