Advertisement

Construction for a Nominative Signature Scheme from Lattice with Enhanced Security

  • Meenakshi KansalEmail author
  • Ratna Dutta
  • Sourav Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)

Abstract

The existing secure nominative signature schemes are all based on bilinear pairings and are secure only on classical machines. In this paper, we present the first lattice based nominative signature scheme. The security of our scheme relies on the hardness of short integer solution (SIS) and learning with error (LWE) problems for which no polynomial time quantum algorithms exist till now. Consequently, our scheme is the first nominative signature scheme that withstand quantum attacks. Furthermore, we propose stronger security models for unforgeability and invisibility and prove our construction achieve these enhanced security. Besides, our scheme exhibits impersonation and non-repudiation following standard security model. We emphasis that the security analysis against all the security attributes for our scheme are in standard model except the security against malicious nominator which uses random oracle.

Keywords

Lattice based cryptography Nominative signature Unforgeability Invisibility Non-repudiation 

References

  1. 1.
    Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM (1996)Google Scholar
  2. 2.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  4. 4.
    Huang, Q., Liu, D.Y., Wong, D.S.: An efficient one-move nominative signature scheme. Int. J. Appl. Cryptogr. 1(2), 133–143 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Huang, Z., Wang, Y.: Convertible nominative signatures. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 348–357. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27800-9_30CrossRefGoogle Scholar
  6. 6.
    Kim, S.J., Park, S.J., Won, D.H.: Nominative signatures. In: ICEIC: International Conference on Electronics, Informations and Communications, pp. 68–71 (1995)Google Scholar
  7. 7.
    Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_13CrossRefGoogle Scholar
  8. 8.
    Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_8CrossRefGoogle Scholar
  9. 9.
    Liu, D.Y.W., Chang, S., Wong, D.S., Mu, Y.: Nominative signature from ring signature. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 396–411. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75651-4_27CrossRefGoogle Scholar
  10. 10.
    Liu, D.Y.W., et al.: Formal definition and construction of nominative signature. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 57–68. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77048-0_5CrossRefGoogle Scholar
  11. 11.
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_43CrossRefGoogle Scholar
  12. 12.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  13. 13.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schuldt, J.C.N., Hanaoka, G.: Non-transferable user certification secure against authority information leaks and impersonation attacks. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 413–430. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21554-4_24CrossRefGoogle Scholar
  15. 15.
    Susilo, W., Mu, Y.: On the security of nominative signatures. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 329–335. Springer, Heidelberg (2005).  https://doi.org/10.1007/11506157_28CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meenakshi Kansal
    • 1
    Email author
  • Ratna Dutta
    • 1
  • Sourav Mukhopadhyay
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations