Advertisement

A Practical and Insider Secure Signcryption with Non-interactive Non-repudiation

  • Augustin P. SarrEmail author
  • Papa B. Seye
  • Togdé Ngarenon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)

Abstract

Signcryption with non-interactive non-repudiation is a public key primitive which aims at combining the functionalities of encryption and signature schemes, while offering to a judge the ability to settle a repudiation dispute without engaging in a costly multi-roundprotocol. We propose a new RSA based identification scheme together with a strongly unforgeable signature scheme. We derive a practical and efficient signcryption scheme with non-interactive non-repudiation we show to be insider secure, under the RSA assumption and the Random Oracle model. The communication overhead of our signcryption scheme, compared to the corresponding signature scheme is one group element.

Keywords

Identification Signature Signcryption Insider security Non-interactive non-repudiation Signed quadratic residues 

References

  1. 1.
    Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared secret with application to the generation of shared safe-prime products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_27CrossRefGoogle Scholar
  2. 2.
    Badertscher, C., Banfi, F., Maurer, U.: A constructive perspective on signcryption security. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 102–120. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98113-0_6CrossRefzbMATHGoogle Scholar
  3. 3.
    Baek, J., Steinfeld, R.: Security for signcryption: the multi-user model. In: Dent, A., Zheng, Y. (eds.) Practical Signcryption. ISC, pp. 43–53. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-540-89411-7_3CrossRefzbMATHGoogle Scholar
  4. 4.
    Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45664-3_6CrossRefGoogle Scholar
  5. 5.
    Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol. 20(2), 203–235 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054014CrossRefzbMATHGoogle Scholar
  7. 7.
    Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 390–399. ACM (2006)Google Scholar
  8. 8.
    Bellare, M., Rogaway, P.: Random oracle are practical: a paradigm for designing efficient protocols. In: ACM-CCS 1993, pp. 62–73. ACM (1993)Google Scholar
  9. 9.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer Science & Business Media, Heidelberg (2003).  https://doi.org/10.1007/978-3-662-09527-0CrossRefzbMATHGoogle Scholar
  10. 10.
    Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. J. Cryptol. 22(4), 470–504 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fan, J., Zheng, Y., Tang, X.: Signcryption with non-interactive non-repudiation without random oracles. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Computational Science X. LNCS, vol. 6340, pp. 202–230. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17499-5_9CrossRefGoogle Scholar
  12. 12.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  13. 13.
    Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Barstow, D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-45961-8_11CrossRefGoogle Scholar
  14. 14.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_37CrossRefGoogle Scholar
  15. 15.
    Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_2CrossRefGoogle Scholar
  16. 16.
    Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 626–642. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_37CrossRefGoogle Scholar
  17. 17.
    Malone-Lee, J.: Signcryption with non-interactive non-repudiation. Des. Codes Crypt. 37(1), 81–109 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  19. 19.
    Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44586-2_8CrossRefGoogle Scholar
  20. 20.
    Sarr, A.P., Elbaz–Vincent, P.: On the security of the (F)HMQV protocol. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 207–224. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31517-1_11CrossRefGoogle Scholar
  21. 21.
    Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A secure and efficient authenticated Diffie–Hellman protocol. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 83–98. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16441-5_6CrossRefzbMATHGoogle Scholar
  22. 22.
    Shin, J.-B., Lee, K., Shim, K.: New DSA-verifiable signcryption schemes. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36552-4_3CrossRefGoogle Scholar
  23. 23.
    Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(\ll \) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052234CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Augustin P. Sarr
    • 1
    Email author
  • Papa B. Seye
    • 1
  • Togdé Ngarenon
    • 1
  1. 1.Lacca, UFR SAT, Université Gaston Berger de Saint-LouisSaint-LouisSenegal

Personalised recommendations