On the Tracing Traitors Math

Dedicated to the Memory of Bob Blakley - Pioneer of Digital Fingerprinting and Inventor of Secret Sharing
  • Grigory KabatianskyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)


We give an overview of the most important mathematical results related to different types of tracing traitors schemes, or schemes with identifiable parent property, especially for the case when the scheme’s “length” goes to infinity.



I am very grateful to Alexander Barg, Marcel Fernandez and Elena Egorova for very fruitful collaboration in the area of tracing traitors and around!


  1. 1.
    Wagner, N.R.: Fingerprinting. In: Proceedings of the Symposium on Security and Privacy, Oakland, CA, pp. 18–22, April 1983Google Scholar
  2. 2.
    Blakley, G.R., Meadows, C., Purdy, G.B.: Fingerprinting long forgiving messages. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 180–189. Springer, Heidelberg (1986). Scholar
  3. 3.
    Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). Scholar
  4. 4.
    Hollmann, H.D., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.: On codes with the identifiable parent property. J. Comb. Theory Ser. A 82(2), 121–133 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44, 1897–1905 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barg, A., Blakley, G.R., Kabatiansky, G.: Digital fingerprinting codes: problems statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4), 852–865 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48, pp. 313–317 (1979)Google Scholar
  9. 9.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Collins, M.J.: Upper bounds for parent-identifying set systems. Des. Codes Crypt. 51(2), 167–173 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, vol. 16, North-Holland Mathematical Library (1977)Google Scholar
  12. 12.
    Kabatiansky, G.A.: Good ternary 2-traceability codes exist. In: Proceedings of the IEEE Symposium on Information Theory, Chicago, IL, p. 203 (2004)Google Scholar
  13. 13.
    Kabatiansky, G.A.: Codes for copyright protection: the case of two pirates. Probl. Inf. Transm. 41, 182–186 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Blackburn, S.R., Etzion, T., Ng, S.-L.: Traceability codes. J. Comb. Theory Ser. A 117(8), 1049–1057 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn., Wiley Series in Discrete Mathematics and Optimization (2016)Google Scholar
  16. 16.
    Barg, A., Kabatiansky, G.: Class of I.P.P codes with effective tracing algorithm. J. Complex. 20(2–3), 137–147 (2004)CrossRefGoogle Scholar
  17. 17.
    Safavi-Naini, R., Wang, Y.: New results on frame-proof codes and traceability schemes. IEEE Trans. Inf. Theory 47(7), 3029–3033 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lofvenberg, J., Larsson, J.-A.: Comments on “new results on frame-proof codes and traceability schemes”. IEEE Trans. Inf. Theory 56(11), 5888–5889 (2010)CrossRefGoogle Scholar
  19. 19.
    Egorova, E., Kabatiansky, G.: Analysis of two tracing traitor schemes via coding theory. In: Barbero, Á.I., Skachek, V., Ytrehus, Ø. (eds.) ICMCTA 2017. LNCS, vol. 10495, pp. 84–92. Springer, Cham (2017). Scholar
  20. 20.
    Barg, A., Cohen, G., Encheva, S., Kabatiansky, G., Zémor, G.: A hypergraph approach to the identifying parent property: the case of multiple parents. SIAM J. Discrete Math. 14(3), 423–431 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Alon, N., Cohen, G., Krivelevich, M., Litsyn, S.: Generalized hashing and parent-identifying codes. J. Comb. Theory Ser. A 104(1), 207–215 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Friedman, A.D., Graham, R.L., Ullman, J.D.: Universal single transition time asynchronous state assignments. IEEE Trans. Comput. 18(6), 541–547 (1969)CrossRefGoogle Scholar
  23. 23.
    Sagalovich, Y.L.: Separating systems. Prob. Inf. Transm. 30(2), 105–123 (1994)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Cohen G.D., Schaathun H.G.: Asymptotic overview on separating codes. Technical report 248, Department of Informatics, University of Bergen, Bergen, Norway (2003)Google Scholar
  25. 25.
    Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47, 1042–1049 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vorob’ev, I.V.: Bounds on the rate of separating codes. Prob. Inf. Transm. 53(1), 30–41 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10(4), 363–377 (1964)CrossRefGoogle Scholar
  28. 28.
    Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Prob. Inf. Transm. 18(2), 166–171 (1982)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Furedi, Z., Erdos, P., Frankl, P.: Families of finite sets in which no set is covered by the union of r others. Israel J. Math. 51(1), 79–89 (1985)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Gu, Y., Miao, Y.: Bounds on traceability schemes. IEEE Trans. Inf. Theory 64(5), 3450–3460 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Skolkovo Institute of Science and Technology (Skoltech)MoscowRussia

Personalised recommendations