Advertisement

Perfect, Hamming and Simplex Linear Error-Block Codes with Minimum \(\pi \)-distance 3

  • Soukaina Belabssir
  • Edoukou Berenger Ayebie
  • El Mamoun SouidiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)

Abstract

Linear error-block codes were introduced in 2006 as a generalization of linear block codes. In this paper we construct two new families of perfect binary linear error-block codes of \( \pi \)-distance 3, namely, \([n_1]\ldots [n_t][2]^s\) (where \( t\ge 1 \)), and \([n_1][n_t][3]^s\) (where \( t= 1\) or \(t=2\)), we also introduce the notions of Hamming and Simplex linear error-block codes, and we give a method to construct Hamming LEB codes from its parity check matrix. We also prove that Hamming LEB codes are perfect, and the constructed perfect codes are Hamming.

Keywords

Linear error-block codes Simplex codes Hamming code Hamming bound and perfect codes 

References

  1. 1.
    Feng, K., Xu, L., Hickernell, F.J.: Linear error-block codes. Finite Fields Appl. 12, 638–652 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dariti, R., Souidi, E.M.: New families of perfect linear error-block codes. Int. J. Inf. Coding Theory 2(2/3), 84–95 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dariti, R., Souidi, E.M.: An application of linear error-block codes in steganography. Int. J. Digit. Inf. Wirel. Commun. 1, 426–433 (2012)Google Scholar
  4. 4.
    Dariti, R., Souidi, E.M.: Cyclicity and decoding of linear error-block codes. J. Theorecal Appl. Inf. Technol. 25, 39–42 (2011)Google Scholar
  5. 5.
    Dariti, R., Souidi, E.M.: Packing and covering radii of linear error-block codes. Int. J. Math. Sci. 7, 13–17 (2013)zbMATHGoogle Scholar
  6. 6.
    Udomkavanich, P., Jitman, S.: Bounds and modifications on linear error-block codes. Int. Math. Forum 5, 35–50 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dariti, R.: Linear error-block codes and applications. Thèse de Doctorat, Université Mohammed V-Agdal, Faculté des Sciences (2012)Google Scholar
  8. 8.
    Tietäväinen, A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24(1), 88–96 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zinovev, V.A., Leontev, V.K.: Nonexistence of perfect codes over Galois fields. Probl. Control. Inf. Theory 2(2), 123–132 (1973)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soukaina Belabssir
    • 1
  • Edoukou Berenger Ayebie
    • 1
  • El Mamoun Souidi
    • 1
    Email author
  1. 1.Faculty of Sciences, Laboratory of Mathematics, Computer Science, Applications and Information SecurityMohammed V University in RabatRabatMorocco

Personalised recommendations