Advertisement

A New Gabidulin-Like Code and Its Application in Cryptography

  • Terry Shue Chien LauEmail author
  • Chik How Tan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)

Abstract

We introduce a new rank-metric code, namely \(\varvec{\lambda }\)-Gabidulin code by multiplying each of the columns of the generator of Gabidulin codes with entries from \(\varvec{\lambda }=(\lambda _1,\ldots ,\lambda _n) \in \mathbb {F}_{q^m}^n\). We discuss the motivation of introducing \(\varvec{\lambda }\)-Gabidulin code and prove some of its properties. Then, we design a new McEliece type rank metric based encryption scheme on \(\varvec{\lambda }\)-Gabidulin code, with a scrambler matrix depending on \(\varvec{\lambda }\). We show that this new cryptosystem is secure against the existing attacks on Gabidulin codes based encryption, in particularly how it resists Overbeck’s structural attack, annulator polynomial attack and the Frobenius weak attack. Finally, we also propose some parameters for the new cryptosystem and show that our proposal has smaller key size than the Loi17 Encryption [29] using Gabidulin codes proposed in PQCrypto 2017.

Keywords

Post-quantum cryptography McEliece Gabidulin code Public-key encryption 

References

  1. 1.
    Abdouli, A., et al.: DRANKULA: a McEliece-like rank metric based cryptosystem implementation. In: The Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE) 2018, vol. 2, pp. 64–75. SECRYPT (2018)Google Scholar
  2. 2.
    Aguilar, C., Blazy, O., Deneuville, J., Gaborit, P., Zémor, G.: Efficient encryption from random quasi-cyclic codes. IEEE Trans. Inf. Theory 64(5), 3927–3943 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solving the rank syndrome decoding problem. In: The Proceedings of IEEE International Symposium on Information Theory (ISIT) 2018, pp. 2421–2425 (2018)Google Scholar
  4. 4.
    Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0034862CrossRefGoogle Scholar
  5. 5.
    Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12929-2_6CrossRefGoogle Scholar
  6. 6.
    Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes: RankSign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03326-2_3CrossRefGoogle Scholar
  7. 7.
    Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_16CrossRefGoogle Scholar
  8. 8.
    Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Peredachi Informatsii 21(1), 3–16 (1985)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gabidulin, E.M.: Attacks and counter-attacks on the GPT public key cryptosystem. Des. Codes Cryptogr. 48(2), 171–177 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gabidulin, E.M., Ourivski, A.V.: Modified GPT PKC with right scrambler. Electron. Notes Discret. Math. 6, 168–177 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_41CrossRefzbMATHGoogle Scholar
  12. 12.
    Gabidulin, E.M., Rashwan, H., Honary, B.: On improving security of GPT cryptosystems. In: The Proceedings of IEEE International Symposium on Information Theory (ISIT) 2009, pp. 1110–1114 (2009)Google Scholar
  13. 13.
    Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_7CrossRefGoogle Scholar
  14. 14.
    Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptography. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 1–12. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06734-6_1CrossRefGoogle Scholar
  16. 16.
    Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Galvez, L., Kim, J., Kim, M.J., Kim, Y., Lee, N.: McNie: compact McEliece-Niederreiter Cryptosystem. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
  18. 18.
    Gibson, J.K.: Severely denting the Gabidulin version of the McEliece public-key cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_4CrossRefGoogle Scholar
  20. 20.
    Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Extension of Overbeck’s attack for Gabidulin based cryptosystems. Des. Codes Cryptogr. 86(2), 319–340 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Considerations for rank-based cryptosystems. In: IEEE International Symposium on Information Theory (ISIT) 2016, pp. 2544–2548 (2016)Google Scholar
  22. 22.
    Kim, J., Galvez, L., Kim, Y.-S., Lee, N.: A new LRPC-Kronecker product codes based public-key cryptography. In: The Proceedings of the 5th ACM on Asia Public-Key Cryptography Workshop (APKC) 2018, pp. 25–33 (2018)Google Scholar
  23. 23.
    Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -conversions for McEliece PKC -. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44586-2_2CrossRefzbMATHGoogle Scholar
  24. 24.
    Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: The Proceedings of Yet Another Conference on Cryptography (YACC) 2006, pp. 142–152 (2006)Google Scholar
  25. 25.
    Lau, T.S.C., Tan, C.H.: A new encryption scheme based on rank metric codes. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 750–758. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93638-3_43CrossRefGoogle Scholar
  26. 26.
    Lau, T.S.C., Tan, C.H.: A new technique in rank metric code-based encryption. Cryptography 2(4), 32 (2018)CrossRefGoogle Scholar
  27. 27.
    Lau, T.S.C., Tan, C.H.: Key recovery attack on McNie based on low rank parity check codes and its reparation. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 19–34. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97916-8_2CrossRefGoogle Scholar
  28. 28.
    Loidreau, P.: Designing a rank metric based McEliece cryptosystem. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 142–152. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12929-2_11CrossRefGoogle Scholar
  29. 29.
    Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59879-6_1CrossRefGoogle Scholar
  30. 30.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, North-Holland, Amsterdamm (1977)zbMATHGoogle Scholar
  31. 31.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report 42-44, Jet Propulsion Laboratory, Pasedena, pp. 114–116 (1978)Google Scholar
  32. 32.
    Ore, O.: On a special class of polynomials. Trans. Am. Math. Soc. 35(3), 559–584 (1933)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Otmani, A., Kalachi, H.T., Ndjeya, S.: Improved cryptanalysis of rank metric schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ourivski, A.V., Gabidulin, E.M.: Column scrambler for the GPT cryptosystem. Discret. Appl. Math. 128, 207–221 (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Overbeck, R.: Extending Gibson’s attacks on the GPT cryptosystem. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 178–188. Springer, Heidelberg (2006).  https://doi.org/10.1007/11779360_15CrossRefGoogle Scholar
  37. 37.
    Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Puchinger, S., Wachter-Zeh, A.: Sub-quadratic decoding of Gabidulin codes. In: IEEE International Symposium on Information Theory (ISIT) 2016, pp. 2554–2558 (2016)Google Scholar
  39. 39.
    Rashwan, H., Gabidulin, E.M., Honary, B.: Security of the GPT cryptosystem and its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)CrossRefGoogle Scholar
  40. 40.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. (SIAM) 8(2), 300–304 (1960)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore

Personalised recommendations