Advertisement

Smart Systems to Improve the Mobility of People with Visual Impairment Through IoM and IoMT

  • Raluca Maria Aileni
  • George Suciu
  • Victor Suciu
  • Sever Pasca
  • Jean Ciurea
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

This chapter presents several aspects regarding smart system to help people with low visual acuity, possibilities of integration into wearable systems or in common transport systems around the world, and integration with IoM (Internet of Mobility) and IoMT (Internet of Mobile Things). Also, in this work a few case studies are presented, which describe the use of assistive technology with interfaces based on vision, audio and tactile senses and smart systems integrated into wearable devices that can guide the people with visual impairment.

Keywords

Smart systems Visual impairment Assistive technology Mobility IoMT IoM Wearable Sensors 

References

  1. Ahlmark, D. I. (2016). Haptic Navigation Aids for the Visually Impaired (Doctoral dissertation, Luleå tekniska Universitet, 2016).Google Scholar
  2. Al-Fahoum, A. S., Al-Hmoud, H. B., & Al-Fraihat, A. A. (2013). A smart infrared microcontroller-based blind guidance system. Active and Passive Electronic Components, 2013, 726480.CrossRefGoogle Scholar
  3. Bainter, P. S. (2018). Visual field test: Learn how the procedure is performed. Retrieved September 10, 2018, from https://www.medicinenet.com/visual_field_test/article.htm
  4. Barbabella, F., Melchiorre, M. G., Quattrini, S., Papa, R., & Lamura, G. (2017). How can eHealth improve care for people with multimorbidity in Europe? Copenhagen: World Health Organization, Regional Office for Europe.Google Scholar
  5. Berger, A., Vokalova, A., Maly, F., & Poulova, P. (2017). Google glass used as assistive technology its utilization for blind and visually impaired people. In International Conference on Mobile Web and Information Systems (pp. 70–82). Cham: Springer.Google Scholar
  6. Bouck, E. (2015). Assistive technology. Los Angeles, CA: Sage.Google Scholar
  7. Currie, Z., Bhan, A., & Pepper, I. (2000). Reliability of Snellen charts for testing visual acuity for driving: Prospective study and postal questionnaire. BMJ, 321(7267), 990–992.CrossRefGoogle Scholar
  8. Dandona, L., & Dandona, R. (2006). Revision of visual impairment definitions in the International Statistical Classification of Diseases. BMC Medicine, 4, 7.CrossRefGoogle Scholar
  9. Elgendy, M., & Lanyi, C. S. (2018). Review on smart solutions for people with visual impairment. In International Conference on Computers Helping People with Special Needs (pp. 81–84). Cham: Springer.CrossRefGoogle Scholar
  10. EVA. (n.d.). Extended visual assistant. Budapest: EVA. Retrieved October 11, 2018, from http://www.eva.vision/
  11. Frulio, F., Sheikhi, E., Rossazza, L., Perfetto, G., Calvachi, A., Picco, G., & Comai, S. (2017). IOM–Internet of Mobility: A wearable device for outdoor data collection. In International Conference on Smart Objects and Technologies for Social Good (pp. 88–95). Cham: Springer.CrossRefGoogle Scholar
  12. Gleeson, M., Sherrington, C., Lo, S., & Keay, L. (2015). Can the Alexander Technique improve balance and mobility in older adults with visual impairments? A randomized controlled trial. Clinical Rehabilitation, 29(3), 244–260.CrossRefGoogle Scholar
  13. Gómez, N. L. C., Sánchez, Á. Q., López, E. K. G., & Rocha, M. A. M. (2017). SBK: Smart braille keyboard for learning braille literacy in blind or visually impaired people. In Proceedings of the 8th Latin American Conference on Human-Computer Interaction (p. 26). New York, NY: ACM.Google Scholar
  14. Grussenmeyer, W., & Folmer, E. (2017). Accessible touchscreen technology for people with visual impairments: A survey. ACM Transactions on Accessible Computing (TACCESS), 9(2), 6.Google Scholar
  15. Hartong, D. T., Jorritsma, F. F., Neve, J. J., Melis-Dankers, B. J., & Kooijman, A. C. (2004). Improved mobility and independence of night-blind people using night-vision goggles. Investigative Ophthalmology & Visual Science, 45(6), 1725–1731.CrossRefGoogle Scholar
  16. Hersh, M., & Johnson, M. A. (2010). Assistive technology for visually impaired and blind people. Berlin: Springer Science & Business Media.Google Scholar
  17. Hietanen, S. (2014). Mobility as a service. The new transport model. ITS & Transport Management Supplement. Eurotransport, 12(2), 2–4.Google Scholar
  18. Home - Aira. (2018). Retrieved October 11, 2018, from https://aira.io/
  19. Home - Horus. (2018). Retrieved October 11, 2018, from http://horus.tech
  20. Huang, F. C., Wetzstein, G., Barsky, B., & Raskar, R. (2016). U.S. Patent No. 14/823,906. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  21. iMerciv Inc. (2018). The all new BuzzClip. Toronto, ON: iMerciv Inc. Retrieved October 10, 2018, from https://imerciv.com/ Google Scholar
  22. Kammoun, S., Jouffrais, C., Guerreiro, T., Nicolau, H., & Jorge, J. (2012). Guiding blind people with haptic feedback. Frontiers in Accessibility for Pervasive Computing (Pervasive 2012), 3.Google Scholar
  23. Kerkar, P. (2018). Visual impairment: Types, causes, symptoms, treatment, diagnosis. Palm Harbor, FL: PainAssist Inc. Retrieved September 01, 2018, from https://www.epainassist.com/eye-pain/visual-impairment Google Scholar
  24. Kiuru, T., Metso, M., Utriainen, M., Metsävainio, K., Jauhonen, H. M., Rajala, R., … Sylberg, J. (2018). Assistive device for orientation and mobility of the visually impaired based on millimeter wave radar technology—Clinical investigation results. Cogent Engineering, 5, 1450322.CrossRefGoogle Scholar
  25. Kumar, P. M., Gandhi, U., Varatharajan, R., Manogaran, G., Jidhesh, R., & Vadivel, T. (2017). Intelligent face recognition and navigation system using neural learning for smart security in Internet of Things. Cluster Computing, 1–12.Google Scholar
  26. Lamkin, P. (2015). Microsoft’s headset for the visually impaired gets voice controls. London: Wareable Ltd.. Retrieved October 10, 2018, from https://www.wareable.com/wearable-tech/microsoft-bone-conduction-headset-for-the-blind-448 Google Scholar
  27. MedlinePlus. (2018). Vision impairment and blindness. Bethesda, MD: MedlinePlus. Retrieved October 10, 2018, from https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment Google Scholar
  28. Mihalcea, G., Suciu, G., & Vasilescu, C. (2018). Real-time autonomous system of navigation using a stereoscopic camera. In 2018 International Conference on Communications (COMM) (pp. 497–500). Washington, DC: IEEE.CrossRefGoogle Scholar
  29. Munger, R. J., Hilkes, R. G., Perron, M., & Sohi, N. (2017). U.S. Patent No. 9,618,748. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  30. Nahrstedt, K. (2014). Internet of mobile things: Challenges and opportunities. In PACT (pp. 1–2). New York, NY: ACM.Google Scholar
  31. National Eye Institute. (2018). Facts about retinitis pigmentosa. Bethesda, MD: National Eye Institute. Retrieved September 04, 2018, from https://nei.nih.gov/health/pigmentosa/pigmentosa_facts Google Scholar
  32. Ounapuu, E. (2016). VisioPal - Smart solution to the visually impaired and blind, Tallinn University of Technology, Faculty of Information Technology.Google Scholar
  33. Owsley, C., Ball, K., McGwin, G., Jr., Sloane, M. E., Roenker, D. L., White, M. F., & Overley, E. T. (1998). Visual processing impairment and risk of motor vehicle crash among older adults. JAMA, 279(14), 1083–1088.CrossRefGoogle Scholar
  34. Ramadhan, A. J. (2018). Wearable smart system for visually impaired people. Sensors, 18(3), 843.CrossRefGoogle Scholar
  35. Research to Prevent Blindness. (2018). Uveitis/infectious diseases. New York, NY: Research to Prevent Blindness. Retrieved September 04, 2018, from https://www.rpbusa.org/rpb/resources-and-advocacy/resources/rpb-vision-resources/infectious-diseases/ Google Scholar
  36. Rimmer, J. H., Riley, B., Wang, E., & Rauworth, A. (2005). Accessibility of health clubs for people with mobility disabilities and visual impairments. American Journal of Public Health, 95(11), 2022–2028.CrossRefGoogle Scholar
  37. SARA CE. (n.d.). Retrieved September 6, 2018, from http://www.envisiontechnology.org/html/visually_impaired.html#SARA
  38. Schwiegerling, J. (2004). Field guide to visual and ophthalmic optics. Bellingham WA: SPIE.CrossRefGoogle Scholar
  39. Seeing AI. (n.d.). Retrieved October 11, 2018, from https://www.microsoft.com/en-us/seeing-ai
  40. Shahrestani, S. (2017). Internet of things and smart environments: Assistive technologies for disability, dementia, and aging. New York, NY: Springer.CrossRefGoogle Scholar
  41. Sunu, Inc. (n.d.). It’s your world. Explore it with the Sunu Band. Somerville, MA: Sunu, Inc. Retrieved October 10, 2018, from https://www.sunu.io/en/index.html
  42. Tanna, P., Strauss, R. W., Fujinami, K., & Michaelides, M. (2017). Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. British Journal of Ophthalmology, 101(1), 25–30.CrossRefGoogle Scholar
  43. To, H., & Régo, N. (2017). eSight 3: A day will come when all legally blind individuals can get esight at no cost. Cool Blind Tech. Retrieved October 12, 2018, from https://coolblindtech.com/esight-3-a-day-will-come-when-all-legally-blind-individuals-can-get-esight-at-no-cost/
  44. Tucker, E. (2017). Maptic is a wearable navigation system for the visually impaired. London: Dezeen. Retrieved October 10, 2018, from https://www.dezeen.com/2017/08/02/maptic-wearable-guidance-system-visually-impaired-design-products-wearable-technology-graduates Google Scholar
  45. van Rheede, J. J., Wilson, I. R., Qian, R. I., Downes, S. M., Kennard, C., & Hicks, S. L. (2015). Improving mobility performance in low vision with a distance-based representation of the visual scene. Investigative Ophthalmology & Visual Science, 56(8), 4802–4809.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raluca Maria Aileni
    • 1
  • George Suciu
    • 1
  • Victor Suciu
    • 1
  • Sever Pasca
    • 1
  • Jean Ciurea
    • 2
  1. 1.Faculty of Electronics, Telecommunication and Information TechnologyPolitehnica University of BucharestBucharestRomania
  2. 2.Neurosurgery DepartmentBagdasar-Arseni HospitalBucharestRomania

Personalised recommendations