An Overview of Magnetic Material: Preparation and Adsorption Removal of Heavy Metals from Wastewater

  • M. Ruthiraan
  • N. M. MubarakEmail author
  • E. C. AbdullahEmail author
  • Mohammad Khalid
  • Sabzoi Nizamuddin
  • Rashmi Walvekar
  • Rama Rao Karri
Part of the Nanotechnology in the Life Sciences book series (NALIS)


The issue of wastewater impurities along harmful heavy metal ion is rather critical. In this matter, there is a necessity for developed techniques to wastewater treatment. Recently, magnetic-based carbon materials application for the metal ion removal from water has significantly gotten attention. For years, researchers design techniques that emphasize on the magnetic material, in order to attain comprehensive benefit. This paper provided detailed review on the synthesis of magnetic materials. In addition, compressive review on heavy metal was narrated. Hence, magnetic-based material has proven excellent adsorption capacity for waste treatment.


Magnetic materials Heavy metals Wastewater Adsorption 


  1. Abdel-Ghani N, Elchaghaby G (2007) Influence of operating conditions on the removal of Cu, Zn, Cd, and Pb ions from wastewater by adsorption. Int J Environ Sci Technol 4(4):451–456CrossRefGoogle Scholar
  2. Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30(29):5737–5750CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ademiluyi F, Amadi S, Amakama NJ (2009) Adsorption and treatment of organic contaminants using activated carbon from waste Nigerian bamboo. J Appl Sci Environ Manag 13(3):39–47Google Scholar
  4. Agamuthu P, Fauziah S (2011) Challenges and issues in moving towards sustainable landfilling in a transitory country-Malaysia. Waste Manag Res 29(1):13–19CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alsentzer HA (1963) Ion exchange in water treatment. J Am Water Works Ass 55(6):742–748CrossRefGoogle Scholar
  6. Al-Shannag M, Bani-Melhem K, Al-Anber Z, Al-Qodah Z (2013) Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique. Sep Sci Technol 48(4):673–680CrossRefGoogle Scholar
  7. Ardejani FD, Badii K, Limaee NY, Mahmoodi N, Arami M, Shafaei S, Mirhabibi AR (2007) Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel, a low-cost adsorbent. Dyes Pigments 73(2):178–185CrossRefGoogle Scholar
  8. Ates F, Un UT (2013) Production of char from hornbeam sawdust and its performance evaluation in the dye removal. J Anal Appl Pyrolysis 103:159–166CrossRefGoogle Scholar
  9. Baig SA, Sheng T, Sun C, Xue X, Tan L, Xu X (2014) Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance. PLoS One 9(6):e100704CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carlson L, Vuorinen A, Lahermo P, Tuovinen OH (1980) Mineralogical, geochemical, and microbiological aspects of iron deposition from groundwater. In: Biogeochemistry of ancient and modern environments. Springer, Berlin/Heidelberg, pp 355–336Google Scholar
  11. Chang IS, Kim SN (2005) Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process Biochem 40(3):1307–1314CrossRefGoogle Scholar
  12. Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807CrossRefPubMedPubMedCentralGoogle Scholar
  14. Council MD (2011) Annual Report Cyberjaya: Malaysian Dental Council, 2012Google Scholar
  15. Czekaj P, López F, Güell C (2000) Membrane fouling during microfiltration of fermented beverages. J Membr Sci 166(2):199–212CrossRefGoogle Scholar
  16. Devi P, Saroha AK (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525–553CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eliceche AM, Daviou MC, Hoch PM, Uribe IO (2002) Optimisation of azeotropic distillation columns combined with pervaporation membranes. Comput Chem Eng 26(4):563–573CrossRefGoogle Scholar
  18. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314CrossRefPubMedPubMedCentralGoogle Scholar
  19. Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13(6):623–642CrossRefGoogle Scholar
  20. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gao H, Lv S, Dou J, Kong M, Dai D, Si C, Liu G (2015) The efficient adsorption removal of Cr (vi) by using Fe3O4 nanoparticles hybridized with carbonaceous materials. RSC Adv 5(74):60033–60040CrossRefGoogle Scholar
  22. Ghorai S, Pant K (2005) Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep Purif Technol 42(3):265–271CrossRefGoogle Scholar
  23. Gillman G, Sumpter E (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils. Soil Res 24(1):61–66CrossRefGoogle Scholar
  24. Gustafson H (1949) Ion exchange in water treatment. Ind Eng Chem 41(3):464–646CrossRefGoogle Scholar
  25. Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16(10):931–937CrossRefGoogle Scholar
  26. Han Z, Sani B, Akkanen J, Abel S, Nybom I, Karapanagioti HK, Werner D (2015) A critical evaluation of magnetic activated carbon’s potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. J Hazard Mater 286:41–47CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hill TL (1946) Statistical mechanics of multimolecular adsorption II. Localized and mobile adsorption and absorption. J Chem Phys 14(7):441–453CrossRefGoogle Scholar
  28. Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jiang J-Q, Graham N, André C, Kelsall GH, Brandon N (2002) Laboratory study of electro-coagulation–flotation for water treatment. Water Res 36(16):4064–4078CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jiang T-Y, Jiang J, Xu R-K, Li Z (2012) Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89(3):249–256CrossRefPubMedPubMedCentralGoogle Scholar
  31. Johari A, Ahmed SI, Hashim H, Alkali H, Ramli M (2012) Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew Sustain Energy Rev 16(5):2907–2912CrossRefGoogle Scholar
  32. Johari A, Alkali H, Hashim H, Ahmed SI, Mat R (2014) Municipal solid waste management and potential revenue from recycling in Malaysia. Mod Appl Sci 8(4):37CrossRefGoogle Scholar
  33. Jorgensen T, Weatherley L (2003) Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res 37(8):1723–1728CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jovancicevic V, Bockris JM, Carbajal J, Zelenay P, Mizuno T (1986) Adsorption and absorption of chloride ions on passive iron systems. J Electrochem Soc 133(11):2219–2226CrossRefGoogle Scholar
  35. Kahani S, Hamadanian M, Vandadi O (eds) (2007) Deposition of magnetite nanoparticles in activated carbons and preparation of magnetic activated carbons. First Sharjah international conference on nanotechnology and its applications (AIP conference proceedings, Vol 929)Google Scholar
  36. Kakaei A, Kazemeini M (2016) Removal of Cd (II) in water samples using modified magnetic iron oxide nanoparticle. Iran J Toxicol 10(1):9–14Google Scholar
  37. Kakavandi B, Jafari AJ, Kalantary RR, Nasseri S, Ameri A, Esrafily A (2013) Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iran J Environ Health Sci Eng 10(1):1CrossRefGoogle Scholar
  38. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study. Dyes Pigments 51(1):25–40CrossRefGoogle Scholar
  39. Kohn J (1958) Small-scale membrane filter electrophoresis and immuno-electrophoresis. Clin Chim Acta 3(5):450–454CrossRefPubMedPubMedCentralGoogle Scholar
  40. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3(5):547–562CrossRefGoogle Scholar
  41. Li Y-H, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266CrossRefGoogle Scholar
  42. Li Y-H, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb 2+ on carbon nanotubes. Water Res 39(4):605–609CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lim S-F, Zheng Y-M, Chen JP (2009) Organic arsenic adsorption onto a magnetic sorbent. Langmuir 25(9):4973–4978CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lin L, Chen J, Xu Z, Yuan S, Cao M, Liu H, Lu X (2009) Removal of ammonia nitrogen in wastewater by microwave radiation: a pilot-scale study. J Hazard Mater 168(2):862–867CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu Z, Zhang FS (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 101(7):2562–2564CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu H, Zhao X, Qu J (2010) Electrocoagulation in water treatment. In: Electrochemistry for the environment. Springer, New York, pp 245–262CrossRefGoogle Scholar
  48. Liu WJ, Zeng FX, Jiang H, Zhang XS (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour Technol 102(17):8247–8825CrossRefPubMedPubMedCentralGoogle Scholar
  49. Liu R, Shen X, Yang X, Wang Q, Yang F (2013) Adsorption characteristics of methyl blue onto magnetic Ni0. 5Zn0. 5Fe2O4 nanoparticles prepared by the rapid combustion process. J Nanopart Res 15(6):1–11Google Scholar
  50. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–669CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lovás M, Znamenáčková I, Zubrik A, Kováčová M, Dolinská S (2011) The application of microwave energy in mineral processing–a review. Acta Montan Slovaca 16(2):137Google Scholar
  52. Ma H, Li JB, Liu WW, Miao M, Cheng BJ, Zhu SW (2015) Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Bioresour Technol 190:13–22CrossRefPubMedPubMedCentralGoogle Scholar
  53. Marcus Y, SenGupta AK (2001) Ion exchange and solvent extraction: a series of advances. CRC Press, Boca RatonCrossRefGoogle Scholar
  54. Mohan D, Sarswat A, Singh VK, Alexandre-Franco M, Pittman CU (2011) Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem Eng J 172(2):1111–1125CrossRefGoogle Scholar
  55. Mohan D, Kumar H, Sarswat A, Alexandre-Franco M, Pittman CU (2014a) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528CrossRefGoogle Scholar
  56. Mohan D, Sarswat A, Ok YS, Pittman CU (2014b) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: a critical review. Bioresour Technol 160:191–202CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mohanty K, Jha M, Meikap BC, Biswas MN (2005) Preparation and characterization of activated carbons from Terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater. Ind Eng Chem Res 44(11):4128–4138CrossRefGoogle Scholar
  58. Mohanty K, Das D, Biswas M (2006) Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12(2):119–121CrossRefGoogle Scholar
  59. Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1):83–94CrossRefGoogle Scholar
  60. Mou F, Guan J, Ma H, Xu L, Shi W (2012) Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl Mater Interfaces 4(8):3987–3989CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mubarak N, Alicia R, Abdullah E, Sahu J, Haslija AA, Tan J (2013) Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J Environ Chem Eng 1(3):486–495CrossRefGoogle Scholar
  62. Mubarak NM, Kundu A, Sahu JN, Abdullah EC, Jayakumar NS (2014) Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenergy 61:265–275CrossRefGoogle Scholar
  63. Mubarak N, Fo Y, Al-Salim HS, Sahu J, Abdullah E, Nizamuddin S, Ganesan P (2015) Removal of methylene blue and orange-g from waste water using magnetic biochar. Int J Nanosci 14:1550009CrossRefGoogle Scholar
  64. Nakahira A, Nishida S, Fukunishi K (2006) Synthesis of magnetic activated carbons for removal of environmental endocrine disrupter using magnetic vector. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 114(1):135–137CrossRefGoogle Scholar
  65. Ng HY, Hermanowicz SW (2005) Membrane bioreactor operation at short solids retention times: performance and biomass characteristics. Water Res 39(6):981–992CrossRefPubMedPubMedCentralGoogle Scholar
  66. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189CrossRefGoogle Scholar
  67. Park H-D, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72(8):5643–5647CrossRefPubMedPubMedCentralGoogle Scholar
  68. Payne KB, Abdel-Fattah TM (2005) Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. J Environ Sci Health 40(4):723–77249CrossRefGoogle Scholar
  69. Peng L, Ren Y, Gu J, Qin P, Zeng Q, Shao J, Chai L (2014) Iron improving bio-char derived from microalgae on removal of tetracycline from aqueous system. Environ Sci Pollut Res 21(12):7631–7640CrossRefGoogle Scholar
  70. Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42(14):3601–3610CrossRefPubMedPubMedCentralGoogle Scholar
  71. Reddy DHK, Lee SM (2014) Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids Surf A Physicochem Eng Asp 454:96–103CrossRefGoogle Scholar
  72. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930CrossRefGoogle Scholar
  73. Ruparelia J, Duttagupta S, Chatterjee A, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1):145–156CrossRefGoogle Scholar
  74. Schnepp Z, Yang W, Antonietti M, Giordano C (2010) Biotemplating of metal carbide microstructures: the magnetic leaf. Angew Chem Int Ed 49(37):6564–6566CrossRefGoogle Scholar
  75. Souza AF, Neto AJS, Câmara LDT (2011) Modeling of batch and continuous adsorption systems by kinetic mechanisms. INTECH Open Access Publisher, 1–16Google Scholar
  76. Tarmudi Z, Abdullah ML (2012) Tap AOM. An overview of municipal solid wastes generation in Malaysia. J Teknol 51(1):1–15Google Scholar
  77. Thompson JR (1981) Non-deestructive vibratory cleaning system for reverse osmosis and ultra filtration membranes. Google PatentsGoogle Scholar
  78. Tian Y, Wu M, Lin X, Huang P, Huang Y (2011) Synthesis of magnetic wheat straw for arsenic adsorption. J Hazard Mater 193:10–16CrossRefPubMedPubMedCentralGoogle Scholar
  79. Usman AR, Ahmad M, El-Mahrouky M, Al-Omran A, Ok YS, Sallam AS, Al-Wabel MI (2016) Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environ Geochem Health 38:511–521CrossRefPubMedPubMedCentralGoogle Scholar
  80. Visser AE, Swatloski RP, Griffin ST, Hartman DH, Rogers RD (2001) Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep Sci Technol 36(5–6):785–804CrossRefGoogle Scholar
  81. Visvanathan C, Aim RB, Parameshwaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30(1):1–4CrossRefGoogle Scholar
  82. Wang Y, Wang X, Wang X, Liu M, Wu Z, Yang L, Zhao J (2013a) Adsorption of Pb (II) from aqueous solution to Ni-doped bamboo charcoal. J Indust Eng Chem 19(1):353–359CrossRefGoogle Scholar
  83. Wang W, Wang X, Wang X, Yang L, Wu Z, Xia S, Zhao J (2013b) Cr (VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. J Environ Sci 25(9):1726–1735CrossRefGoogle Scholar
  84. Wang SY, Tang YK, Li K, Mo YY, Li HF, Gu ZQ (2014) Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresour Technol 174:67–73CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG (2015a) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wang M, Sheng G, Qiu Y (2015b) A novel manganese-oxide/biochar composite for efficient removal of lead (II) from aqueous solutions. Int J Environ Sci Technol 12(5):1719–1726CrossRefGoogle Scholar
  87. Watanabe H, Tanaka H (1978) A non-ionic surfactant as a new solvent for liquid—liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta 25(10):585–589CrossRefPubMedPubMedCentralGoogle Scholar
  88. Waterston K, Wang JW, Bejan D, Bunce NJ (2006) Electrochemical waste water treatment: electrooxidation of acetaminophen. J Appl Electrochem 36(2):227–232CrossRefGoogle Scholar
  89. Wibowo N, Setyadhi L, Wibowo D, Setiawan J, Ismadji S (2007) Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. J Hazard Mater 146(1):237–242CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yadoji P, Peelamedu R, Agrawal D, Roy R (2003) Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering. Mater Sci Eng B 98(3):269–278CrossRefGoogle Scholar
  91. Yan L, Kong L, Qu Z, Li L, Shen G (2014) Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal. ACS Sustain Chem Eng 3(1):125–132CrossRefGoogle Scholar
  92. Yang C, Qian Y, Zhang L, Feng J (2006) Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater. Chem Eng J 117(2):179–185CrossRefGoogle Scholar
  93. Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2002) Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system. J Membr Sci 210(2):411–421CrossRefGoogle Scholar
  94. Yu JX, Chi RA, Zhang YF, Xu ZG, Xiao CQ, Guo J (2012) A situ co-precipitation method to prepare magnetic PMDA modified sugarcane bagasse and its application for competitive adsorption of methylene blue and basic magenta. Bioresour Technol 110:160–166CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yu JX, Wang LY, Chi RA, Zhang YF, Xu ZG, Guo J (2013) Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl Surf Sci 268:163–167CrossRefGoogle Scholar
  96. Zahoor M, Khan FA (2014) Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab J Chem 11:729–738CrossRefGoogle Scholar
  97. Zhang G, Qu J, Liu H, Cooper AT, Wu R (2007a) Cu Fe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68(6):1058–1066CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang G, Qu J, Liu H, Cooper AT, Wu R (2007b) CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68(6):1058–1106CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhang YX, Yu XY, Jin Z, Jia Y, Xu WH, Luo T, Zhu BJ, Liu JH, Huang XJ (2011) Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH (Boehmite)@ SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb (II) removal. J Mater Chem 21(41):16550–16557CrossRefGoogle Scholar
  100. Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32CrossRefGoogle Scholar
  101. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013a) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhang Z, Wang X, Wang Y, Xia S, Chen L, Zhang Y et al (2013b) Pb (II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. J Environ Sci 25(5):1044–1053CrossRefGoogle Scholar
  103. Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zhu J, Gu H, Guo J, Chen M, Wei H, Luo Z, Colorado HA, Yerra N, Ding D, Ho TC (2014a) Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr (VI) removal. J Mater Chem A 2(7):2256–2265CrossRefGoogle Scholar
  105. Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J (2014b) Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour Technol 154:209–221CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zubrik A, Lovás M, Matik M, Štefušová K, Hredzák S (2014) Synthesis of magnetic materials from natural carbon precursors–a review. Inżynieria Mineralna 15:127–130Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Ruthiraan
    • 1
  • N. M. Mubarak
    • 2
    Email author
  • E. C. Abdullah
    • 1
    Email author
  • Mohammad Khalid
    • 3
  • Sabzoi Nizamuddin
    • 4
  • Rashmi Walvekar
    • 5
  • Rama Rao Karri
    • 6
  1. 1.Department of Chemical Process EngineeringMalaysia-Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia (UTM)Kuala LumpurMalaysia
  2. 2.Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin UniversityMiriMalaysia
  3. 3.Graphene & Advanced 2D Materials Research Group (GAMRG)School of Science and Technology, Sunway UniversitySubang JayaMalaysia
  4. 4.School of EngineeringRMIT UniversityMelbourneAustralia
  5. 5.School of EngineeringTaylor’s University Lakeside CampusSubang JayaMalaysia
  6. 6.Department of Petroleum & Chemical EngineeringFaculty of Engineering, Universiti Teknologi BruneiDarussalamBrunei

Personalised recommendations