Advertisement

Microbially Synthesized Biomagnetic Nanomaterials

  • Mohamed M. Ramadan
  • Asran-Amal
  • Hassan Almoammar
  • Kamel A. Abd-Elsalam
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Magnetic nanoparticles (MNPs) received special importance at least the last two decades, mainly due to their magnetic properties. Biological sources which include microorganism, algae fungi, and plants have been employed for the production of low-price, strength-green, and risk-free environmental metallic nanoparticles. Microbial synthesis is an emerging and frontier technique for biological synthesizing MNPs. Low price, sustainability, non-toxicity, and simplicity are commonplace blessings shared with the aid of green synthesis procedures in the manufacturing’s direction of MNPs. This chapter presents an excellent status view of some investigations of microbially synthesized magnetic nanomaterials. Further, this report explains about the biogenic synthesis of supramagnetite nanoparticles (Fe3O4-NPs).

Keywords

Biogenic synthesis Magnetic nanoparticles Fungi Bacteria Algae 

References

  1. Abdeen S, Isaac RR, Geo S, Sornalekshmi S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on Human Pathogens. Nano Biomed Eng 5(1):39–45CrossRefGoogle Scholar
  2. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87Google Scholar
  3. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824CrossRefGoogle Scholar
  5. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–6CrossRefGoogle Scholar
  6. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ali I, Peng C, Lin D, Naz I (2018) Green synthesis of the innovative super paramagnetic nanoparticles from the leaves extract of Fraxinus chinensis Roxb and their application for the decolourisation of toxic dyes. Green Processing Synth 8:256.  https://doi.org/10.1515/gps-2018-0078CrossRefGoogle Scholar
  8. Alqudami A, Annapoorni S (2007) Fluorescence from metallic silver and iron nanoparticles prepared by exploding wire technique. Plasmonics 2(1):5–13CrossRefGoogle Scholar
  9. Apte M, Girme G, Bankar A, RaviKumar A, Zinjarde S (2013) 3, 4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnol 11(1):2CrossRefGoogle Scholar
  10. Arulpandi I, Kanimozhi S (2015) Characterization and cytotoxicity evaluation of superparamagnetic nanoparticles biosynthesized by Fusarium oxysporum SK. Int J Pharm Sci Res 6(1):376Google Scholar
  11. Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B 103:283–297CrossRefGoogle Scholar
  12. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984CrossRefPubMedPubMedCentralGoogle Scholar
  13. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.  https://doi.org/10.3389/fchem.2019.00065
  14. Baba K, Kaneko T, Hatakeyama R (2009) Efficient synthesis of gold nanoparticles using ion irradiation in gas–liquid interfacial plasmas. Appl Phys Express 2(3):035006CrossRefGoogle Scholar
  15. Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Biosci Bioeng 85(4):359–361Google Scholar
  16. Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver. Colloids Surf A Physicochem Eng Asp 368:58–63CrossRefGoogle Scholar
  17. Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518CrossRefGoogle Scholar
  18. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces 71(1):113–118CrossRefGoogle Scholar
  19. Bellini S (1963a) Further studies on “magnetosensitive bacteria.” Instit Microbiol University of Pavia, Italy. http://www.calpoly.edu/~rfrankel/SBellini2.pdf. Cal Poly. Accessed 5 May 2009
  20. Bellini SJ (1963b) About a unique behavior of freshwater bacteria. Instit Microbiol. http://www.calpoly.edu/~rfrankel/SBellini1.pdf. Cal Poly. Accessed 21 Apr 2009
  21. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141CrossRefGoogle Scholar
  22. Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BL, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24(11):5787–5794CrossRefGoogle Scholar
  23. Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438CrossRefGoogle Scholar
  24. Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379CrossRefGoogle Scholar
  25. Boroumand Moghaddam A, Namvar F, Moniri M, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bose S, Hochella MF Jr, Gorby YA, Kennedy DW, McCready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976CrossRefGoogle Scholar
  27. Botham KM, Mayes PA (2006) Biologic oxidation. In: Harper’s illustrared biochemistry, 28th edn. Lange-McGraw Hill, London, p 47Google Scholar
  28. Brayner R, Yéprémian C, Djediat C, Coradin T, Herbst F, Livage J, Fiévet F, Couté A (2009) Photosynthetic microorganism-mediated synthesis of (β-FeOOH) nanorods. Langmuir 25(17):10062–10067Google Scholar
  29. Chan S (2012) Instantaneous biosynthesis of silver nanoparticles (AgNPs) by selected macro fungi. Aust J Basic Appl Sci 6(1):222–226Google Scholar
  30. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583CrossRefGoogle Scholar
  31. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim, p 17CrossRefGoogle Scholar
  32. Cummings DE, Caccavo F Jr, Spring S, Rosenzweig RF (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe (III)–reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171(3):183–188CrossRefGoogle Scholar
  33. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596CrossRefGoogle Scholar
  34. Davis SA, Patel HM, Mayes EL, Mendelson NH, Franco G, Mann S (1998) Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials. Chem Mater 10(9):2516–2524CrossRefGoogle Scholar
  35. Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dobson J (2006) Magnetic micro- and nano-particle-based targeting for drug and Gene delivery. Nanomedicine 1:31–37CrossRefPubMedPubMedCentralGoogle Scholar
  38. Duran N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8CrossRefGoogle Scholar
  39. Elblbesy MA, Madbouly AK, Hamdan TA (2014) Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2(5):98–103Google Scholar
  40. Elcey C, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol Appl Sci 3:408–417Google Scholar
  41. El-Kassas HY, Aly-Eldeen MA, Gharib SM (2016) Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin 35(8):89–98CrossRefGoogle Scholar
  42. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater 2(3):243–247CrossRefGoogle Scholar
  43. Gan PP, Ng SH, Huang Y, Yau SS (2012) Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. CESE 113:132–135Google Scholar
  44. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42(8):3371–3393CrossRefGoogle Scholar
  45. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097CrossRefGoogle Scholar
  46. Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Dig J Nanomater Bios 7(2):833–839Google Scholar
  47. Haw CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36(4):1417–1422CrossRefGoogle Scholar
  48. Hawksworth DL, Lucking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4).  https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
  49. Herlin-Boime N, Sublemontier O, Lacour F (2012) inventors; Commissariat a l’Energie Atomique et aux Energies Alternatives, assignee. Synthesis of silicon nanocrystals by laser pyrolysis. United States patent US 8,337,673. Dec 25Google Scholar
  50. Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A 91(2):241–246CrossRefGoogle Scholar
  51. Hu FQ, Wei L, Zhou Z, Ran YL, Li Z, Gao MY (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18(19):2553–2556CrossRefGoogle Scholar
  52. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104CrossRefGoogle Scholar
  53. Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces 121:474–483CrossRefGoogle Scholar
  54. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–26350CrossRefGoogle Scholar
  55. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices 2014:359316PubMedPubMedCentralGoogle Scholar
  56. Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int 2013:639725CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jha AK, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306CrossRefGoogle Scholar
  58. Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles, biosynthesis and characterization. Colloids Surf B Biointerfaces 75(1):330–334CrossRefGoogle Scholar
  59. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473CrossRefGoogle Scholar
  60. Jun W, Jingjun S, Qian S, Qianwang C (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38:1113–1118CrossRefGoogle Scholar
  61. Karade VC, Waifalkar PP, Dongle TD, Sahoo SC, Kollu P, Patil PS, Patil PB (2017) Greener synthesis of magnetite nanoparticles using green tea extract and their magnetic properties. Mater Res Express 4(9):096102CrossRefGoogle Scholar
  62. Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective World. J Microbiol Biotechnol 29(2):191–207CrossRefGoogle Scholar
  63. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanoparticl Res 11(5):1075–1085CrossRefGoogle Scholar
  64. Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar JC (2012) Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci–Poland 30(3):254–258CrossRefGoogle Scholar
  65. Kavitha AL, Prabu HG, Babu SA, Suja SK (2013) Magnetite nanoparticles-chitosan composite containing carbon paste electrode for glucose biosensor application. J Nanosci Nanotechnol 13(1):98–104CrossRefGoogle Scholar
  66. Khan MY, Mangrich AS, Schultz J, Grasel FS, Mattoso N, Mosca DH (2015) Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. J Anal Appl Pyrolysis 116:42–48CrossRefGoogle Scholar
  67. Kim S, Kim JH, Jeon O (2009) Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm 71(3):420–430CrossRefGoogle Scholar
  68. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157CrossRefGoogle Scholar
  69. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445CrossRefGoogle Scholar
  70. Kumar D, Karthik L, Kumar G, Roa KB (2011) Biosynthesis of silver anoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 3:1100–1111Google Scholar
  71. Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M, Krug H (2011) Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 253(2):81–93CrossRefGoogle Scholar
  72. Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Matter 18(38):2815CrossRefGoogle Scholar
  73. Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296(5569):892–895CrossRefGoogle Scholar
  74. Lee H, Purdon AM, Chu V, Westervelt RM (2004) Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett 4(5):995–998CrossRefGoogle Scholar
  75. Lee JH, Roh Y, Hur HG (2008) Microbial production and characterization of superparamagnetic magnetite nanoparticles by Shewanella sp. HN-41. J Microbiol Biotechnol 18(9):1572–1577PubMedGoogle Scholar
  76. Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7(17):3162–3165Google Scholar
  77. Lefever CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76(11):3740–3743CrossRefGoogle Scholar
  78. Lehtinen KE, Backman U, Jokiniemi JK, Kulmala M (2004) Three-body collisions as a particle formation mechanism in silver nanoparticle synthesis. J Colloid Interface Sci 274(2):526–530CrossRefGoogle Scholar
  79. LewisOscar F, Vismaya S, Arunkumar M, Thajuddin N, Dhanasekaran D, Nithya C (2016) Algal nanoparticles: synthesis and biotechnological potentials. In: Algae-organisms for imminent biotechnology. InTechGoogle Scholar
  80. Li ZQ, Chen ZM (2007) Preparation characterization and application of nano magnetic polymer materials. J Chem Ind Times 21(6):57–60Google Scholar
  81. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34(33):8382–8392CrossRefGoogle Scholar
  82. Liu J, Qin G, Raveendran P, Ikushima Y (2006) Facile “green” synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals. Chem Eur J 12(8):2131–2138CrossRefGoogle Scholar
  83. Logeswari P, Silambarasan S, Abraham J (2013) Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci Iran 20(3):1049–1054Google Scholar
  84. Longoria EC, Velasquez SM, Nestor AV, Berumen EA, Borja MA (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. Microb Biotechnol 22(7):1000–1004CrossRefGoogle Scholar
  85. Lovley DR, Chapelle FH, Phillips EJ (1990) Fe (III)–reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain. Geology 18(10):954–957CrossRefGoogle Scholar
  86. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013a) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964CrossRefPubMedPubMedCentralGoogle Scholar
  87. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J (2013b) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7):7533–7548CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mahdavian AR, Mirrahimi MA (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1–3):264–271CrossRefGoogle Scholar
  89. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988CrossRefGoogle Scholar
  90. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Reddy BV, Raju BD (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Bios 6(1):181–186Google Scholar
  91. Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407CrossRefGoogle Scholar
  92. Mann S, Sparks NH, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343(6255):258CrossRefGoogle Scholar
  93. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7(3):37CrossRefGoogle Scholar
  94. Mashjoor S, Yousefzadi M, Zolgharnain H, Kamrani E, Alishahi M (2018) Organic and inorganic nano-Fe3O4: alga Ulva flexuosa-based synthesis, antimicrobial effects and acute toxicity to briny water rotifer Brachionus rotundiformis. Environ Pollut 237:50–64CrossRefGoogle Scholar
  95. Matsunaga T, Okamura Y, Tanaka T (2004) Biotechnological application of nano-scale engineered bacterial magnetic particles. J Mater Chem 14(14):2099–2105CrossRefGoogle Scholar
  96. Mazumdar H, Haloi N (2017) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49Google Scholar
  97. Mohamed YM, Azzam AM, Amin BH, Safwat NA (2015) Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol 14(14):1234–1241CrossRefGoogle Scholar
  98. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  99. Moon JW, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37(10):1023–1031CrossRefGoogle Scholar
  100. Mukherjee P (2017) Stenotrophomonas and Microbacterium: mediated biogenesis of copper, silver and iron nanoparticles-proteomic insights and antibacterial properties versus biofilm formation. J Clust Sci 28(1):331–358CrossRefGoogle Scholar
  101. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed Angew. Chem Int Ed Engl 40(19):3585–3588CrossRefGoogle Scholar
  102. Nadagouda MN, Hoag G, Collins J, Varma RS (2009) Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Cryst Growth Des 9(11):4979–4983CrossRefGoogle Scholar
  103. Nagajyothi PC, Lee KD (2011) Synthesis of plant-mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J Nanomat 2011:49CrossRefGoogle Scholar
  104. Namvar F, Mohamed S, Fard SG, Behravan J, Mustapha NM, Alitheen NB, Othman F (2012) Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem 130(2):376–382CrossRefGoogle Scholar
  105. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface. Science 156(1–2):1–3Google Scholar
  106. Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13(8):3129–3137CrossRefGoogle Scholar
  107. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2010) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts. Langmuir 27(1):264–271CrossRefGoogle Scholar
  108. Ogholbeyg AB, Kianvash A, Hajalilou A, Abouzari-Lotf E, Zarebkohan A (2018) Cytotoxicity characteristics of green assisted-synthesized superparamagnetic maghemite (γ-Fe2O3) nanoparticles. J Mater Sci Mater Electron 29(14):12135–12143CrossRefGoogle Scholar
  109. Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:219CrossRefGoogle Scholar
  110. Pavani KV, Kumar NS (2013) Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species kvp 12. Am J Nanomater 1(2):24–26Google Scholar
  111. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125(34):10192–10193CrossRefGoogle Scholar
  112. Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Iañez-Pareja E (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta 74(3):967–979CrossRefGoogle Scholar
  113. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract Spectrochim. Acta Mol Biomol Spectrosc 73:374–381CrossRefGoogle Scholar
  114. Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18(25):9977–9984CrossRefGoogle Scholar
  115. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961,  https://doi.org/10.1155/2014/963961
  116. Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)Google Scholar
  117. Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)Google Scholar
  118. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  119. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363
  120. Prasad R, Jha A, Prasad K (2018a) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0 https://www.springer.com/978-3-319-99570-0
  121. Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656
  122. Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology & applicability. In: Biomimetics learning from nature. InTechGoogle Scholar
  123. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19(35):6274–6293CrossRefGoogle Scholar
  124. Rai M (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, BerlinCrossRefGoogle Scholar
  125. Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1–2):174–180CrossRefGoogle Scholar
  126. Renugadevi K, Aswini RV (2012) Microwave irradiation assisted synthesis of silver nanoparticle using Azadirachta indica leaf extract as a reducing agent and in vitro evaluation of its antibacterial and anticancer activity. Int J Nanomat Bio 2:5–10Google Scholar
  127. Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118(10):529–534CrossRefGoogle Scholar
  128. Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapleton RD, Moon JW, Phelps TJ, Fredrickson JK (2006) Metal reduction and iron biomineralization by a psychrotolerant Fe (III)-reducing bacterium, Shewanella sp. strain PV-4. Appl Microbiol Biotechnol 72(5):3236–3244Google Scholar
  129. Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70Google Scholar
  130. Salem M, Xia Y, Allan A, Rohani S, Gillies ER (2015) Curcumin-loaded, folic acid-functionalized magnetite particles for targeted drug delivery. RSC Adv 5(47):37521–37532CrossRefGoogle Scholar
  131. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566CrossRefGoogle Scholar
  132. Satyavathi R, Krishna MB, Rao SV et al (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in non-linear optics. Adv Sci Lett 3:1–6CrossRefGoogle Scholar
  133. Seabra AB, Haddad P, Duran N (2013) Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotechnol 7(3):90–99CrossRefGoogle Scholar
  134. Sen IK, Mandal AK, Chakraborti S, Dey B, Chakraborty R, Islam SS (2013) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449CrossRefGoogle Scholar
  135. Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 Nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Biostruct 7:1655–1660Google Scholar
  136. Sharad N, Swapnil R, Ganesh R, Samadhan S, Dinesh K, Shashikant B, Anuj K, Orlando MN, Rajender S, Manoj B (2014) Iron oxide-supported copper oxide nanoparticles (nanocat–Fe–CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives, 4-methoxyaniline, and ullmann-type condensation reactions ACS sustainable chemistry. ACS Sustain Chem Eng 2(7):1699–1706CrossRefGoogle Scholar
  137. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96CrossRefGoogle Scholar
  138. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256CrossRefGoogle Scholar
  139. Siddiqi KS, Ur-rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11(1):498CrossRefPubMedPubMedCentralGoogle Scholar
  140. Siji S, Njana J, Amrita PJ, Vishnudasan D (2018) Biogenic synthesis of iron oxide nanoparticles from marine algae. Int J Multidisciplin Res TIJMR 28(1):1–7Google Scholar
  141. Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci 97(7):1055–1058Google Scholar
  142. Skibola CF (2004) The effect of Fucus vesiculosus, an edible brown seaweed, upon menstrual cycle length and hormonal status in three pre-menopausal women: a case report. BMC Complem Altern M 4(1):10CrossRefGoogle Scholar
  143. Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer RJ, González JM, Whitman WB, Wiegel J (2007) Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 11(1):145–157CrossRefGoogle Scholar
  144. Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578CrossRefGoogle Scholar
  145. Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanoparticl Res 14(4):831CrossRefGoogle Scholar
  146. Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11-a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27(5):1861–1869CrossRefGoogle Scholar
  147. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRefGoogle Scholar
  148. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3(7):955–960CrossRefGoogle Scholar
  149. Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil Biotechnol. Bioprocess Eng 17(4):835–840CrossRefGoogle Scholar
  150. Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7:2148–2152CrossRefGoogle Scholar
  151. Tarafdar JC, Raliya R (2013) Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanopart 2013, Article ID 141274, 4 pages, https://doi.org/10.1155/2013/141274Google Scholar
  152. Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Appl Phys 38(12):199Google Scholar
  153. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262CrossRefGoogle Scholar
  154. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12(1):237–246CrossRefGoogle Scholar
  155. Tucek J, Zboril R, Petridis D (2006) Maghemite nanoparticles by view of Mössbauer spectroscopy. J Nanosci Nanotechnol 6(4):926–947CrossRefGoogle Scholar
  156. Vainshtein M, Belova N, Kulakovskaya T, Suzina N, Sorokin V (2014) Synthesis of magneto-sensitive iron-containing nanoparticles by yeasts. J Ind Microbiol Biotechnol 41(4):657–663CrossRefGoogle Scholar
  157. Venkatessham M, Ayodhya D, Madnusudhan A, Babu NV, Veerabhadra G (2014) A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl Nanoscale 4(1):113–119CrossRefGoogle Scholar
  158. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59CrossRefGoogle Scholar
  159. Wani KD, Kadu BS, Mansara P, Gupta P, Deore AV, Chikate RC, Poddar P, Dhole SD, Kaul-Ghanekar R (2014) Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PloS One 9(9):e107315CrossRefPubMedPubMedCentralGoogle Scholar
  160. Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203(1–3):69–72CrossRefGoogle Scholar
  161. Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood DC (2001) Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria Sep. Sci Technol 36:2571–2607Google Scholar
  162. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982CrossRefGoogle Scholar
  163. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397CrossRefPubMedPubMedCentralGoogle Scholar
  164. Xiao L, Mertens M, Wortmann L, Kremer S, Valldor M, Lammers T, Kiessling F, Mathur S (2015) Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS Appl Mater Interfaces 7:6530–6540CrossRefGoogle Scholar
  165. Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120CrossRefPubMedPubMedCentralGoogle Scholar
  166. Yang SY, Wang WC, Lan CB, Chen CH, Chieh JJ, Horng HE, Hong CY, Yang HC, Tsai CP, Yang CY, Cheng IC (2010a) Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J Virol Methods 164(1-2):14–18CrossRefPubMedPubMedCentralGoogle Scholar
  167. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y (2010b) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12(5):1589–1598CrossRefGoogle Scholar
  168. Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70(9):5595–5602CrossRefPubMedPubMedCentralGoogle Scholar
  169. Yeary LW, Moon JW, Love LJ, Thompson JR, Rawn CJ, Phelps TJ (2005) Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Trans Magn 41(12):4384–4389CrossRefGoogle Scholar
  170. Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11(1):276CrossRefPubMedPubMedCentralGoogle Scholar
  171. Yew YP, Shameli K, Miyake M, Bahiyah N, Khairudin A, Eva S, Mohamad NT, Green LX (2018) Biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system. A review. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2018.04.013
  172. Yong P, Rowson NA, Farr JP, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80(4):369–379CrossRefGoogle Scholar
  173. Youssef K, Hashim AF, Hussien A, Abd-Elsalam KA (2017) Fungi as ecosynthesizers for nanoparticles and their application in agriculture. In: Fungal nanotechnology. Springer, Cham, pp 55–75CrossRefGoogle Scholar
  174. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8):6667–6676CrossRefPubMedPubMedCentralGoogle Scholar
  175. Zavarzina DG, Kolganova TV, Boulygina ES, Kostrikina NA, Tourova TP, Zavarzin GA (2006) Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiology 75(6):673–682CrossRefGoogle Scholar
  176. Zhang L, Dong WF, Sun HB (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5(17):7664–7684CrossRefGoogle Scholar
  177. Zhao H, Saatchi K, Häfeli UO (2009) Preparation of biodegradable magnetic microspheres with poly (lactic acid)-coated magnetite. J Magn Magn Mater 321(10):1356–1363CrossRefGoogle Scholar
  178. Zhou W, He W, Zhong S, Wang Y, Zhao H, Li Z, Yan S (2009) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321(8):1025–1028CrossRefGoogle Scholar
  179. Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, Zhou K, Yue H, Pan Y, Xiao T, Wu LF (2010) Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 161(4):276–283CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed M. Ramadan
    • 1
  • Asran-Amal
    • 1
    • 2
  • Hassan Almoammar
    • 3
  • Kamel A. Abd-Elsalam
    • 1
    • 2
  1. 1.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  2. 2.Unit of Excellence in Nano-Molecular Plant Pathology, Plant Pathology Research InstituteGizaEgypt
  3. 3.National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia

Personalised recommendations