Plant-Mediated Synthesis, Applications, and Challenges of Magnetic Nanostructures

  • Prachee Dubey
  • Geeta Watal
  • Kanti Bhooshan Pandey
Part of the Nanotechnology in the Life Sciences book series (NALIS)


The applications of magnetic nanostructures (MNSs) in various fields of human welfare have recently gained much attention due to their irreplaceable and unique advantages. Plant-mediated synthesized MNSs have provided a sustainable approach toward their cost-effective green synthesis with reduced harm. In the present chapter, syntheses of MNSs by using plant resources, challenges, and their potential applications are discussed.


Magnetic nanostructure Synthesis Plant Health Applications 



Authors are thankful to their institutes to promote the work.


  1. Ahmed K, Tariq I, Siddiqui SU, Mudassir M (2016) Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as reducing agent. Pure Appl Biol 5(3):453–457Google Scholar
  2. Al-Ruqeishi MS, Mohiuddin T, Al-Saadi LK (2016) Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment. Arab J Chem.
  3. Awwad AM, Salem NM (2012) A green and facile approach for synthesis of magnetite nanoparticles. J Nanosci Nanotechnol 2(6):208–213CrossRefGoogle Scholar
  4. Cai Y, Shen Y, Xie A, Li S, Wang X (2010) Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322(19):2938–2943CrossRefGoogle Scholar
  5. Dussána KJ, Giraldo OH, Cardona CA (2007) Application of magnetic nanostructures in biotechnological processes: biodiesel production using lipase immobilized on magnetic carriers. Proc Eur Cong Chem Eng 2007:1–7Google Scholar
  6. Ebrahimi N, Rasoul-Amini S, Ebrahiminezhad A, Ghasemi Y, Gholami A, Seradj H (2016) Comparative study on characteristics and cytotoxicity of bifunctional magneticsilver nanostructures: synthesized using three different reducing agents. Acta Metall Sin-Engl 29(4):326–334CrossRefGoogle Scholar
  7. Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y (2012a) Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr Nanosci 8(6):868–874CrossRefGoogle Scholar
  8. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012b) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Kor Chem Soc 33(12):3957–3962CrossRefGoogle Scholar
  9. Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK, Taghizadeh S, Ghasemi Y, Berenjian A (2018) Plant-mediated synthesis and applications of iron nanoparticles. Mol Biotechnol 60(2):154–168CrossRefPubMedPubMedCentralGoogle Scholar
  10. Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542CrossRefPubMedPubMedCentralGoogle Scholar
  11. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guo J, Wang R, Tjiu WW, Pan J, Liu T (2012) Synthesis of Fe nanoparticles@ graphene composites for environmental applications. J Hazard Mater 225:63–73CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guo T, Lin M, Huang J, Zhou C, Tian W, Yu H, Jiang X, Ye J, Shi Y, Xiao Y, Bian X (2018) The recent advances of magnetic nanoparticles in Medicine. J Nanomater 2018:7805147CrossRefGoogle Scholar
  14. Hao R, Yu J, Ge Z, Zhao L, Sheng F, Xu L, Li G, Hou Y (2013) Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale 5:11954–11963CrossRefPubMedPubMedCentralGoogle Scholar
  15. Harshiny M, Iswarya CN, Matheswaran M (2015) Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol 286:744–749CrossRefGoogle Scholar
  16. He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417CrossRefGoogle Scholar
  17. Herlekar M, Barve S, Kumar R (2014) Plant-mediated green synthesis of iron nanoparticles. J Nanopart Res 2014:1–9. 140614CrossRefGoogle Scholar
  18. Hou Y, Gao S (2003) Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem 13:1510–1512CrossRefGoogle Scholar
  19. Hou Y, Yu J, Gao S (2003) Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J Mater Chem 13:1983–1987CrossRefGoogle Scholar
  20. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta A Mol Biomol Spectrosc 15(130):295–301CrossRefGoogle Scholar
  21. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165CrossRefGoogle Scholar
  23. Jassal V, Shanker U, Gahlot S (2016) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Mater Today Proc 3(6):1874–1882CrossRefGoogle Scholar
  24. Jin Y, Liu F, Shan C, Tong M, Hou Y (2014) Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res 50:124–134CrossRefPubMedPubMedCentralGoogle Scholar
  25. Johnson J, Kent T, Koda J, Peterson C, Rudge S, Tapolsky G (2002) The MTC technology: a platform technology for the site-specific delivery of pharmaceutical agents. Eur Cell Mater 3:12–15Google Scholar
  26. Ju Y, Zhang H, Yu J, Tong S, Tian N, Wang Z, Wang X, Su X, Chu X, Lin J, Ding Y, Li G, Sheng F, Hou Y (2017) Monodisperse Au−Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 11:9239–9248CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kianpour S, Ebrahiminezhad A, Mohkam M, Tamaddon AM, Dehshahri A, Heidari R et al (2016) Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. J Basic Microbiol 57(2):132–140CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Curr Opin Colloid Interface Sci 15(410):67–73CrossRefGoogle Scholar
  29. Kumar A, Singhal A (2009) Synthesis of colloidal silver iron oxide nanoparticles—study of their optical and magnetic behavior. Nanotechnol 20(29):295606CrossRefGoogle Scholar
  30. Kumar B, Smita K, Cumbal L, Debut A (2014) Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc 18(4):364–369CrossRefGoogle Scholar
  31. Kumar B, Smita K, Cumbal L, Debut A, Galeas S, Guerrero VH (2016) Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater Chem Phys 179:310–315CrossRefGoogle Scholar
  32. Latha N, Gowri M (2014) Bio synthesis and characterization of Fe3O4 nanoparticles using Caricaya Papaya leaves extract. Synthesis 3:1551–1556Google Scholar
  33. Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122CrossRefGoogle Scholar
  34. Liu F, Jin Y, Liao H, Cai L, Tong M, Hou Y (2013) Facile self-assembly synthesis of titanate/Fe3O4 nanocomposites for the efficient removal of Pb2+ from aqueous systems. J Mater Chem A 1:805–813CrossRefGoogle Scholar
  35. Liu F, Hou Y, Gao S (2014) Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem Soc Rev 43:8098–8113CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964CrossRefPubMedPubMedCentralGoogle Scholar
  38. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014a) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44Google Scholar
  39. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV et al (2014b) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30(20):5982–5988CrossRefGoogle Scholar
  40. Martínez-Cabanas M, López-García M, Barriada JL, Herrero R, de Vicente MES (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chem Eng J 301:83–91CrossRefGoogle Scholar
  41. Mohamed MA, Abd–Elsalam KA (2018) Nanoantimicrobials for plant pathogens control: potential applications and mechanistic aspects. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer, AG, Cham, pp 87–109CrossRefGoogle Scholar
  42. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34(2–4):237–247CrossRefGoogle Scholar
  43. Muthukumar H, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem Eng 3(12):3149–3156CrossRefGoogle Scholar
  44. Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7. 912342CrossRefGoogle Scholar
  45. Niraimathee V, Subha V, Ravindran RE, Renganathan S (2016) Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Environ Sustain Dev 15(3):227–240CrossRefGoogle Scholar
  46. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pandey KB (2018) Mediterranean diet and its impact on cognitive functions in aging. In: Farooqui AA, Farooqui T (eds) Role of the Mediterranean diet in the brain and neurodegenerative diseases. Elsevier BV, London, pp 157–170CrossRefGoogle Scholar
  48. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  49. Pandey KB, Rizvi SI (2013) Resveratrol up-regulates the erythrocyte plasma membrane redox system and mitigates oxidation-induced alterations in erythrocytes during aging in humans. Rejuvenation Res 16(3):232–240CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pandey KB, Rizvi SI (2014) Role of red grape polyphenols as antidiabetic agents. Integr Med Res 3(3):119–125CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pandey KB, Rizvi SI (2017) Plant polyphenols in healthcare and aging. In: Al-Gubory K, Laher I (eds) Nutritional antioxidant therapies: treatments and perspectives. Springer International Publishing AG, Cham, pp 267–282CrossRefGoogle Scholar
  52. Pandey KB, Tiwari BK (2018) Applications of fungal nanobiotechnology in drug development. In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: principles and applications. Springer Nature, Singapore, pp 273–286CrossRefGoogle Scholar
  53. Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23(8):1307–1315CrossRefGoogle Scholar
  54. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414CrossRefGoogle Scholar
  55. Parera Pera N, Kouki A, Finne J, Pieters RJ (2010) Detection of pathogenic Streptococcus suis bacteria using magnetic glycoparticles. Org Biomol Chem 8(10):2425–2429CrossRefGoogle Scholar
  56. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961,
  57. Prasad AS (2016) Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mater Sci Semicond Process 53:9–83CrossRefGoogle Scholar
  58. Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0 (in press)
  59. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  60. Prasad C, Gangadhara S, Venkateswarlu P (2015) Bioinspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci 6(6):797–802CrossRefGoogle Scholar
  61. Ramaswamy B, Kulkarni SD, Villar PS, Smith RS, Eberly C, Araneda RC, Depireux DA, Shapiro B (2015) Movement of magnetic nanoparticles in brain tissue: mechanisms and impact on normal neuronal function. Nanomedicine 11(7):1821–1829CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2018) Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 40(2):237–248CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815CrossRefPubMedPubMedCentralGoogle Scholar
  64. Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ (2008) Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 130(31):10258–10262CrossRefPubMedPubMedCentralGoogle Scholar
  65. Skomski R, Coey JMD (1994) Exchange coupling and energy product in random two-phase aligned magnets. IEEE Trans Magn 30:607–609CrossRefGoogle Scholar
  66. Soliemanzadeh A, Fekri M, Bakhtiary S, Mehrizi MH (2016) Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions. Chem Ecol 32(3):286–300CrossRefGoogle Scholar
  67. Tadic M, Kralj S, Jagodic M, Hanzel D, Makovec D (2014) Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl Surf Sci 322:255–264CrossRefGoogle Scholar
  68. Tahir M, Mahmood N, Zhang X, Mahmood T, Butt FK, Aslam I, Tanveer M, Idrees F, Khalid S, Shakir I, Yan Y, Zou J, Cao C, Hou Y (2015) Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res 8:3725–3736CrossRefGoogle Scholar
  69. Tang W, Zhen Z, Yang C, Wang L, Cowger T, Chen H, Todd T, Hekmatyar K, Zhao Q, Hou Y, Xie J (2014) Fe5C2 nanoparticles with high MRI contrast enhancement for tumor imaging. Small 10:1245–1249CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vasudeo K, Pramod K (2016) Biosynthesis of nickel nanoparticles using leaf extract of coriander. Biotechnol Ind J 12(11):1–6Google Scholar
  71. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419CrossRefGoogle Scholar
  72. Wang Z, Fang C, Mallavarapu M (2015) Characterization of iron–polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves. Environ Technol Innov 4:92–97CrossRefGoogle Scholar
  73. Wu J, Hou Y, Gao S (2011) Controlled synthesis and multifunctional properties of FePt-Au heterostructures. Nano Res 4:836–848CrossRefGoogle Scholar
  74. Wu J, Zhu J, Zhou M, Hou Y, Gao S (2012) FePt concave nanocubes with enhanced methanol oxidation activity. Cryst Eng Comm 14:7572–7575CrossRefGoogle Scholar
  75. Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yang C, Zhao H, Hou Y, Ma D (2012) Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. J Am Chem Soc 134:15814–15821CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yang W, Zhao T, Huang X, Chu X, Tang T, Ju Y, Wang Q, Hou Y, Gao S (2017) Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem Sci 8:473–481CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yu J, Hao R, Sheng F, Xu L, Li G, Hou Y (2012) Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res 5:679–694CrossRefGoogle Scholar
  80. Yu J, Yang C, Li J, Ding Y, Zhang L, Yousaf MZ, Lin J, Pang R, Wei L, Xu L, Sheng F, Li C, Li G, Zhao L, Hou Y (2014) Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 26:4114–4120CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yu J, Ju Y, Zhao L, Chu X, Yang W, Tian Y, Sheng F, Lin J, Liu F, Dong Y, Hou Y (2016) Multistimuli-regulated photochemothermal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano 10:159–169CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang L, Wu J, Liao H, Hou Y, Gao S (2009) Octahedral Fe3O4 nanoparticles and their assembled structures. Chem Commun 29:4378–4380CrossRefGoogle Scholar
  83. Zhu K, Ju Y, Xu J, Yang Z, Gao S, Hou Y (2018) Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res 51(2):404–413CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhuang Z, Huang L, Wang F, Chen Z (2015) Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using Eucalyptus leaf extract. Ind Crop Prod 69:308–313CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prachee Dubey
    • 1
  • Geeta Watal
    • 1
  • Kanti Bhooshan Pandey
    • 2
  1. 1.Department of ChemistryUniversity of AllahabadAllahabadIndia
  2. 2.CSIR-Central Salt & Marine Chemicals Research InstituteBhavnagarIndia

Personalised recommendations