Advertisement

Bio-Based Synthesis of Magnetic Nanoparticles and Their Applications

  • Siavash Iravani
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The green synthesis of nanoparticles (NPs) has become a matter of great interest. There is a growing need to develop green and eco-friendly approaches which do not use toxic and hazardous chemical materials in the synthesis protocols. There are numerous scientific reports in the field of nanoparticle biosynthesis using organisms. Magnetic NPs have different applications in radionuclide therapy, drug delivery, magnetic resonance imaging (MRI), diagnostics, immunoassays, molecular biology, DNA and RNA purification, cell separation and purification, cell adhesion research, hyperthermia, and wastewater treatment. This chapter provides an overview of green bio-based synthesis of magnetic NPs as well as their applications in environmental, biomedical, and clinical fields.

Keywords

Green chemistry Bio-based synthesis Nanoparticle synthesis Nanoparticles Magnetic nanoparticles 

References

  1. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic Actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  2. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asmaly HA, Abussaud B, Khan I, Saleh TA, Gupta VK, Atieh MA (2015) Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synthesis to enhanced removal of phenol. J Saudi Chem Soc 19:511–520CrossRefGoogle Scholar
  4. Baedecker MJ, Back W (1979) Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. J Hydrol 43:393–414CrossRefGoogle Scholar
  5. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1–11PubMedPubMedCentralGoogle Scholar
  6. Biehl P, von der Lühe M, Dutz S, Schacher FH (2018) Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers 10:91CrossRefGoogle Scholar
  7. Bostrom B, Jansson M, Forsberg C (1982) Phosphorus release from lake sediments. Arch Hydrobiol Beih Ergeb Limnol 18:5–59Google Scholar
  8. Cai Y, Shen Y, Xie A, Li S, Wang X (2010) Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322:2938–2943CrossRefGoogle Scholar
  9. Casula MF, Jun YW, Zaziski DJ, Chan EM, Corrias A, Alivisatos AP (2006) The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. J Am Chem Soc 128:1675–1682CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feitoza NC, Gonçalves TD, Mesquita JJ, Menegucci JS, Santos MK, Chaker JA, Cunha RB, Medeiros AM, Rubim JC, Sousa MH (2014) Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. J Hazard Mater 264:153–160CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ge F, Li M-M, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modifed magnetic nanoparticles. J Hazard Mater 211–212:366–372CrossRefPubMedPubMedCentralGoogle Scholar
  12. Graybeal AL, Heath GR (1984) Remobilization of transition metals in surficial pelagic sediments from the eastern Pacific. Geochim Cosmochim Acta 48:965–975CrossRefGoogle Scholar
  13. Green M (2005) Organometallic based strategies for metal nanocrystal synthesis. Chem Commun 24:3002–3011CrossRefGoogle Scholar
  14. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2:23–39CrossRefGoogle Scholar
  15. Gupta AK, Deva D, Sharma A, Verma N (2010) Fe-grown carbon nanofbers for removal of arsenic (V) in wastewater. Ind Eng Chem Res 49:7074–7084CrossRefGoogle Scholar
  16. Gutierrez AM, Dziubla TD, Hilt JZ (2017) Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev Environ Health 32:111–117CrossRefPubMedPubMedCentralGoogle Scholar
  17. Herrera-Becerra R, Zorrilla C, Ascencio JA (2007) Production of iron oxide nanoparticles by a biosynthesis method: an environmentally friendly route. J Phys Chem A 3:16147–16153Google Scholar
  18. Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A Mater Sci Process 91:241–246CrossRefGoogle Scholar
  19. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677CrossRefGoogle Scholar
  20. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804CrossRefPubMedPubMedCentralGoogle Scholar
  21. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  22. Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Bio Med Res Int 2013.  https://doi.org/10.1155/2013/639725:5
  23. Iravani S, Korbekandi H, Mirmohammadi SV, Mekanik H (2014a) Plants in nanoparticle synthesis. Rev Adv Sci Eng 3:261–274CrossRefGoogle Scholar
  24. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014b) Synthesis of silver nanoparticles: chemical, physical, and biological methods. Res Pharm Sci 9:385–406PubMedPubMedCentralGoogle Scholar
  25. Jahn M, Haderlein S, Meckenstock RU (2005) A novel mechanism of electron transfer from iron-reducing microorganisms to solid iron phases. Geophys Res Abstr 7Google Scholar
  26. Jeong U, Teng XW, Wang Y, Yang H, Xia YN (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60CrossRefGoogle Scholar
  27. Jung JY, Chung YC, Shin HS, Son DH (2004) Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modifed SBR process. Water Res 38:347–354CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kashefi K, Lovley DR (2000) Reduction of Fe (III), Mn (VI), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe (III)–reducing bacteria and archaea. Appl Envirorn Microbiol 67:3275–3279CrossRefGoogle Scholar
  30. Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water purifcation from metal ions using carbon nanoparticleconjugated polymer nanocomposites. Water Res 44:1927–1933CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim YC, Han S, Hong S (2011) A feasibility study of magnetic separation of magnetic nanoparticle for forward osmosis. Water Sci Technol 64:469–476CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kiruba Daniel SCG, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15:1319CrossRefGoogle Scholar
  33. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20CrossRefPubMedPubMedCentralGoogle Scholar
  34. Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192CrossRefGoogle Scholar
  35. Korbekandi H, Iravani S (2013) Biological synthesis of nanoparticles using algae. In: Rai M, Posten C (eds) Green biosynthesis of nanoparticles: mechanisms and applications. CABI, WallingfordGoogle Scholar
  36. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306CrossRefPubMedPubMedCentralGoogle Scholar
  37. Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87:932–937CrossRefGoogle Scholar
  38. Korbekandi H, Ashari Z, Iravani S, Abbasi S (2013) Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res 12:289–298PubMedPubMedCentralGoogle Scholar
  39. Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials (Basel) 7:243CrossRefGoogle Scholar
  41. Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 102:128–133CrossRefGoogle Scholar
  42. Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang N-M, Park J-G, Hyeon T (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584CrossRefPubMedPubMedCentralGoogle Scholar
  43. Laverman AM, Switzer Blum J, Schaefer JK, Phillips EJP, Lovley DR, Oremland RS (1995) Growth of strain SES–3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561PubMedPubMedCentralGoogle Scholar
  44. Lee H, Purdon AM, Chu V, Westervelt RM (2004) Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett 4:995–998CrossRefGoogle Scholar
  45. Lee J, Lee Y, Youn JK, Bin Na H, Yu T, Kim H, Lee SM, Koo YM, Kwak JH, Park HG, Chang HN, Hwang M, Park JG, Kim J, Hyeon T (2008) Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable highperformance biocatalysts. Small 4:143–152CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lei Y, Chen F, Luo Y, Zhang L (2014) Tree-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efcient absorbent for Cr(VI) removal. J Mater Sci 49:4236–4245CrossRefGoogle Scholar
  47. Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, Zhang G, Shi X (2015) Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38:10–21CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liang H, Xu B, Wang Z (2013) Self-assembled 3D flower-like-Fe2O3 microstructures and their superior capability for heavy metal ion removal. Mater Chem Phys 141:727–734CrossRefGoogle Scholar
  49. Liu SV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ (1997) Thermophilic Fe (III)–reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109CrossRefGoogle Scholar
  50. Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ (2004) A magnetocaloric pump for microfluidic applications. IEEE Trans Nanobioscience 3:101–110CrossRefPubMedPubMedCentralGoogle Scholar
  51. Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ, Yeary LW, Cunningham GT (2005) Ferrofluid field induced flow for microfluidic applications. IEEE/ASME Trans Mechatron 10:68–76CrossRefGoogle Scholar
  52. Lovely DR, Stolz JF, Nord GL, Phillips Jr, Elizabeth JP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254CrossRefGoogle Scholar
  53. Lovely DR, Phillips EJP, Lonergan DJ (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706Google Scholar
  54. Lovley DR (1987) Organic matter mineralization with the reduction of ferric iron. Geomicrobiol J 5:375–399CrossRefGoogle Scholar
  55. Lovley DR (2000) Fe (III) and Mn (IV) reduction. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DCCrossRefGoogle Scholar
  56. Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe (III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138PubMedPubMedCentralGoogle Scholar
  57. Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31CrossRefGoogle Scholar
  58. Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013a) Green production of zerovalent iron nanoparticles using tree leaf extracts. Sci Total Environ 1–8:445–446Google Scholar
  59. Machado S, Stawinski W, Slonina P, Pinto AR, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013b) Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci Total Environ 461–462:323–329CrossRefPubMedPubMedCentralGoogle Scholar
  60. Madhavi V, Prasad TNVKV, Reddy AVB, Ravindra Reddy B, Madhavi G (2013) Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim Acta A Mol Biomol Spectrosc 116:17–25CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20:2472–2477CrossRefPubMedPubMedCentralGoogle Scholar
  63. Moroz P, Jones SK, Gray BN (2002a) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth 18:267–284CrossRefGoogle Scholar
  64. Moroz P, Jones SK, Gray BN (2002b) Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol 80:149–156CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mwilu KS, Siska E, Nasir Baig RB, Varma RS, Heithmar E, Rogers KR (2014) Separation and measurement of silver nanoparticles and silver ions using magnetic particles. Sci Total Environ 472:316–323CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS (2010) In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem 12:114–122CrossRefGoogle Scholar
  67. Narayanan S, Sathy BN, Mony U, Koyakutty M, Nair SV, Menon D (2012) Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces 4:251–260CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ngomsik A-F, Bee A, Talbot D, Cote G (2012) Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Sep Purif Technol 86:1–8CrossRefGoogle Scholar
  69. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27:264–271CrossRefPubMedPubMedCentralGoogle Scholar
  70. Oremland RS (1994) Biogeochemical transformations of selenium in anoxic environments. In: Benson SN, Frankenberger WTJ (eds) Selenium in the environment. Mareel Dekker Inc, New YorkGoogle Scholar
  71. Patil RM, Thorat N, Shete PB, Bedge PA, Gavde S, Joshi MG, Tofail SAM, Bohara RA (2018) Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 13:63–72PubMedPubMedCentralGoogle Scholar
  72. Patra JK, Baek KH (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol B 173:291–300CrossRefPubMedPubMedCentralGoogle Scholar
  73. Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18:9977–9984CrossRefGoogle Scholar
  74. Pósfai M, Moskowitz BM, Arató B, Schüler D, Flies C, Bazylinski DA, Frankel RB (2006) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS–1. Earth Planet Sci Lett 249:444–455CrossRefGoogle Scholar
  75. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961,  https://doi.org/10.1155/2014/963961
  76. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363
  77. Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0 https://www.springer.com/978-3-319-99570-0
  78. Radinia IA, Hasan N, Malik MA, Khan Z (2018) Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. J Photochem Photobiol B 183:154–163CrossRefGoogle Scholar
  79. Roden EE, Lovley DR (1993) Dissimilatory Fe (III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742PubMedPubMedCentralGoogle Scholar
  80. Rogers WJ, Basu P (2005) Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis 178:67CrossRefPubMedPubMedCentralGoogle Scholar
  81. Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118:529–534CrossRefGoogle Scholar
  82. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  83. Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Biostruct 7:1655–1661Google Scholar
  84. Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266CrossRefGoogle Scholar
  85. Shipley HJ, Engates KE, Grover VA (2013) Removal of Pb(II),Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion. Environ Sci Pollut Res 20:1727–1736CrossRefGoogle Scholar
  86. Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477CrossRefPubMedPubMedCentralGoogle Scholar
  87. Sun JZ, Liao ZH, Si RW, Kingori GP, Chang FX, Gao L, Shen Y, Xiao X, Wu XY, Yong YC (2014) Adsorption and removal of triphenylmethane dyes from water by magnetic reduced graphene oxide. Water Sci Technol 70:1663–1669CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559CrossRefPubMedPubMedCentralGoogle Scholar
  89. Takur S, Karak N (2014) One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efcient organic and inorganic pollutants removal. Mater Chem Phys 144:425–432CrossRefGoogle Scholar
  90. Tan L, Xu J, Xue X, Lou Z, Zhu J, Baiga SA, Xu X (2014) Multifunctional nanocomposite Fe3O4@SiO2–mPD/SP for selective removal of Pb(II) and Cr(VI) from aqueous solutions. RSC Adv 4:45920–45929CrossRefGoogle Scholar
  91. Thorek D, Chen A, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38CrossRefPubMedPubMedCentralGoogle Scholar
  92. Venkateswarlu S, Subba Rao Y, Balaji T, Prathima B, Jyothi NVV (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244CrossRefGoogle Scholar
  93. Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743CrossRefGoogle Scholar
  94. Virkutyte J, Varma RS (2014) Eco-friendly magnetic iron oxide-pillared montmorillonite for advanced catalytic degradation of dichlorophenol. ACS Sustain Chem Eng 2:1545–1550CrossRefGoogle Scholar
  95. Wang LY, Luo J, Maye MM, Fan Q, Qiang R, Engelhard MH, Wang C, Lin Y, Zhong CJ (2005) Iron oxide-gold coreshell nanoparticles and thin film assembly. J Mater Chem 15:1821–1832CrossRefGoogle Scholar
  96. Wang LY, Bai JW, Li YJ, Huang Y (2008) Multifunctional nanoparticles displaying magnetization and near–IR absorption. Angew Chem Int Ed 47:2439–2442CrossRefGoogle Scholar
  97. Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014a) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466–467:210–213CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wang Z, Fang C, Megharaj M (2014b) Characterization of ironpolyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain Chem Eng 2:1022–1025CrossRefGoogle Scholar
  99. Warheit DB, Borm PJ, Hennes C, Lademann J (2007) Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 19:631–643CrossRefPubMedPubMedCentralGoogle Scholar
  100. Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG (2010) High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. ChemSusChem 3:749–757CrossRefPubMedPubMedCentralGoogle Scholar
  101. Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203:69–72CrossRefGoogle Scholar
  102. Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood DC (2001) Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria. Sep Sci Technol 36:2571–2607CrossRefGoogle Scholar
  103. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501CrossRefPubMedPubMedCentralGoogle Scholar
  105. Yeary LW, Moon J-W, Love LJ, Thompson JR, Rawn CJ, Phelps TJ (2005) Magnetic properties of biosynthesized magnetite nanoparticles. Robot Energetic Syst 41:4384–4389Google Scholar
  106. Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater 18:614–419CrossRefGoogle Scholar
  107. Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed 44:1068–1071CrossRefGoogle Scholar
  108. Yoon TJ, Yu KN, Kim E, Kim JS, Kim BG, Yun SH, Sohn BH, Cho MH, Lee JK, Park SB (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomateriats. Small 2:209–215CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zhang C, Vali H, Romanek CS, Phelps TJ, Liu SV (1998) Formation of single-domain magnetite by a thermophilic bacterium, Am. Fortschr Mineral 83:1409–1418CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Siavash Iravani
    • 1
  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations