Advertisement

Light-Activated Nanoparticles for Antibacterial Studies

  • Krishnapriya Madhu Varier
  • Wuling Liu
  • Yaacov Ben-David
  • Yanmei Li
  • Arulvasu Chinnasamy
  • Babu Gajendran
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 35)

Abstract

Photolysis or light activation of electrons to an energy excited state to aid a release of energy could be utilized in many applications like industries and semiconductors as well as for antimicrobial action. This electron transfer mechanism is widely being incorporated to metals and metal oxides or sometimes with nanoparticles (NPs) to increase its reactivity. However, three forms of NP formulations are used for antibacterial action like nanocomposites, doped NPs, and metal oxide NPs. The preparation, synthesis, and antimicrobial application of the metal oxide NPs are explained coherently in this chapter. Moreover, the future prospects of these NP-assisted light-activated antimicrobial actions are also dealt in detail.

Keywords

Photolysis Nanocomposites Doped nanoparticles Metal oxides Metal oxides NP synthesis Antimicrobial action 

References

  1. Actis L, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Ong JL (2015) Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci 26(7):210–215.  https://doi.org/10.1007/s10856-015-5538-8 CrossRefGoogle Scholar
  2. Ahamed M, Alhadlaq HA, Khan M, Karuppiah P, Aldhabi NA (2014) Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:1–4.  https://doi.org/10.1155/2014/637858 CrossRefGoogle Scholar
  3. Allahverdiyev AM, Abamor ES, Bagirova M, Ra-failovich M (2011) Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6:933–940.  https://doi.org/10.2217/fmb.11.78 CrossRefGoogle Scholar
  4. Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B (2013) Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev 65(13–14):1816–1827.  https://doi.org/10.1016/j.addr.2013.07.020 CrossRefGoogle Scholar
  5. Anjum S, Abbasi BHD (2016) Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L. Int J Nanomed 11:715–728.  https://doi.org/10.2147/IJN.S102359 CrossRefGoogle Scholar
  6. Arakha M, Sweta P, Devyani S, Tapan KP, Bairagi CM, Krishna P, Bibekanand M, Suman J (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813.  https://doi.org/10.1038/srep14813 CrossRefGoogle Scholar
  7. Armentano I, Arciola CR, Fortunati E, Davide F, Samantha M, Concetta FA, Jessica R, Jose MK, Marcello I, Livia V (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:410423.  https://doi.org/10.1155/2014/410423 CrossRefGoogle Scholar
  8. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271.  https://doi.org/10.1126/science.1061051 CrossRefGoogle Scholar
  9. Atou T, Kusaba K, Fukuoka K, Kikuchi M, Syon YJ (1990) Shock-induced phase transition of M 2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds. Sol State Chem 89:378–384.  https://doi.org/10.1016/0022-4596(90)90280-B CrossRefGoogle Scholar
  10. Azam A, Ahmed AS, Oves M, Khan M, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomed 7:3527.  https://doi.org/10.2147/IJN.S29020 CrossRefGoogle Scholar
  11. Becker S, Soukup J, Gallagher J (2002) Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol in Vitro 16:209–218.  https://doi.org/10.1016/S0887-2333(02)00015-2 CrossRefGoogle Scholar
  12. Buzea II, Pacheco K, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71.  https://doi.org/10.1116/1.2815690 CrossRefGoogle Scholar
  13. Carré G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, Gies JP, Keller V, Keller N, Andre P (2014) TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80:2573–2581.  https://doi.org/10.1128/AEM.03995-13 CrossRefGoogle Scholar
  14. Cha SH, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9(9):9097–9105.  https://doi.org/10.1021/acsnano.5b03247 CrossRefGoogle Scholar
  15. Chen CW, Hsu CY, Lai SM, Syu WJ, Wang TY, Lai PS (2014) Metal nano bullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev 78:88–104.  https://doi.org/10.1016/j.addr.2014.08.004 CrossRefGoogle Scholar
  16. Choa YH, Yang JK, Kim BH, Jeong YK, Lee JS, Nakayama T, Sekino T, Niihara K (2003) Preparation and characterization of metal: ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1–2):12–19.  https://doi.org/10.1016/S0304-8853(03)00450-5 CrossRefGoogle Scholar
  17. Choi WY, Termin A, Hoffmann MR (1994) The role of metal-ion dopants in quantum-sized Tio2—correlation between photoreactivity and charge-carrier recombination dynamics. J Phys Chem 98(13):669–679.  https://doi.org/10.1021/j100102a038 CrossRefGoogle Scholar
  18. Cioffi N, Rai M (2012) Nano-antimicrobials. In: Cioffi N, Rai M (eds) Synthesis and characterization of novel nano antimicrobials. Springer, Berlin/Heidelberg. https://link.springer.com/content/pdf/bfm%3A978-3-642-24428-5%2F1%2F1.pdf Google Scholar
  19. Dos Santos CC, Farias IAP, Albuquerque AJR, Silva PM, One GMC, Sampaio FC (2014) Antimicrobial activity of Nano cerium oxide (IV) (CeO2) against Streptococcus Mutans. BMC Proc 8(Suppl 4):48.  https://doi.org/10.1186/1753-6561-8-S4-P48 CrossRefGoogle Scholar
  20. Emami-Karvani ZP, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram positive and gram-negative bacteria. Afr J Microbiol Res 5:1368–1373.  https://doi.org/10.5897/AJMR10.159 CrossRefGoogle Scholar
  21. Fang B, Jiang Y, Nusslein K, Rotello VM, Santore MM (2015) Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Coll Surf B 125:255–263.  https://doi.org/10.1016/j.colsurfb.2014.10.043 CrossRefGoogle Scholar
  22. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  23. Ganguly P, Poole WJA (2003) In situ measurement of reinforcement stress in an aluminum-alumina metal matrix composite under compressive loading. Mater Sci Eng 352:46–54.  https://doi.org/10.1016/S0921-5093(02)00450-1 CrossRefGoogle Scholar
  24. Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Nanoparticle approaches against bacterial infections. Wires Nanomed Nanobi 6(6):532–547.  https://doi.org/10.1002/wnan.1282. Epub 2014 Jul 15CrossRefGoogle Scholar
  25. Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostr Mat 1(1):1–19.  https://doi.org/10.1016/0965-9773(92)90045-Y CrossRefGoogle Scholar
  26. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914.  https://doi.org/10.2147/IJN.S37397. Epub 2012 Nov 30CrossRefGoogle Scholar
  27. Haghighi F, Roudbar MS, Mohammadi P, Hosseinkhani S, Shipour R (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Med 1:33–38. https://pdfs.semanticscholar.org/d816/127a0b7d75797b3497f3009f690985932dbc.pdf CrossRefGoogle Scholar
  28. He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 36(2):750–757.  https://doi.org/10.1021/ja410800y CrossRefGoogle Scholar
  29. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30(14):2782–2789.  https://doi.org/10.1016/j.biomaterials.2009.01.052 CrossRefGoogle Scholar
  30. Hewitt CJ, Bellara SR, Andreani A, Nebe-von-Caron G, McFarlane CM (2001) An evaluation of the anti-bacterial action of ceramic powder slurries using multiparameter flow cytometry. Biotechnol Lett 23:667–675.  https://doi.org/10.1023/A:1010379714673 CrossRefGoogle Scholar
  31. Ho W, Yu JC, Lee S (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photo-catalytic activity. Chem Commun 10:1115–1117.  https://doi.org/10.1039/b515513d CrossRefGoogle Scholar
  32. Hong X, Wen J, Xiong X, Hu Y (2016) Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 23(5):4489–4497.  https://doi.org/10.1007/s11356-015-5668 CrossRefGoogle Scholar
  33. Hosseinkhani P, Zand A, Imani S, Rezayi M, Rezaei Zarchi S (2011) Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dimens 1:279–285.  https://doi.org/10.7508/IJND.2010.04.006 CrossRefGoogle Scholar
  34. Hussein Al Ali SH, Zowalaty EL, Hussein ME, Geilich BM, Webster TJ (2014) Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int J Nanomedicine 9:3801–3814.  https://doi.org/10.2147/IJN.S61143 CrossRefGoogle Scholar
  35. Iram NE, Khan MS, Jolly R, Mohammad A, Mahboob A, ParvezA RHK, Farha F (2015) Interaction mode of polycarbazole-titanium dioxide nanocomposite with DNA: molecular docking simulation and in-vitro antimicrobial study. J Photochem Photobiol 153:20–32.  https://doi.org/10.1016/j.jphotobiol.2015.09.001 CrossRefGoogle Scholar
  36. Jayaseelan C, Abdul AR, Selvaraj MR, Arivarasan VK, Jayachandran V, Se-Kwon K, Moorthy ICS (2013) A Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta A Mole Biomol Spectrosc 107:82–89.  https://doi.org/10.1016/j.saa.2012.12.083 CrossRefGoogle Scholar
  37. Jeong S, Park JS, Song SH, Jang SB (2007) Characterization of antibacterial nanoparticles from the scallop, Ptinopecten yessoensis. Biosci Biotechnol Biochem 71:2242–2247.  https://doi.org/10.1271/bbb.70228 CrossRefGoogle Scholar
  38. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and microscaled oxide particles. Environ Pollut 157:1619–1625.  https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  39. Jin T, He Y (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 13:6877–6885.  https://doi.org/10.1007/s11051-011-0595-5 CrossRefGoogle Scholar
  40. Joicy S, Saravanan R, Prabhu D, Ponpandian N, Thangadurai P (2014) Mn2+ ion influenced optical and photocatalytic behaviour of Mn–ZnS quantum dots prepared by a microwave assisted technique. RSC Adv 4:44592–44599. http://pubs.rsc.org/en/Content/ArticleLanding/2014/RA/c4ra08757g#!divAbstract CrossRefGoogle Scholar
  41. Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS (2016) Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 95:32–42.  https://doi.org/10.1016/j.micpath.2016.02.009 CrossRefGoogle Scholar
  42. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM, AlOthman ZA, Ahmad I, Ashraf GM, Aliev G (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep 6:27689.  https://doi.org/10.1038/srep27689 CrossRefGoogle Scholar
  43. Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley-Interscience, New York.  https://doi.org/10.1002/maco.19740251027 CrossRefGoogle Scholar
  44. Kuhn KP, Chaberny IF, Massholder K, Manfred S, Volker WB, Hans-Gunther S, Lothar E (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UV-A light. Chemosphere 53:71–77.  https://doi.org/10.1016/S0045-6535(03)00362-X CrossRefGoogle Scholar
  45. Kumar A, Kumar A, Sharma G et al (2018) Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion. Chem Eng J 339:393–410.  https://doi.org/10.1016/j.cej.2018.01.105 CrossRefGoogle Scholar
  46. Lellouche J, Friedman A, Gedanken A, Banin E (2012) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 7:5611–5624.  https://doi.org/10.2147/IJN.S37075 CrossRefGoogle Scholar
  47. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nano-particle uptake efficiency. J Am Chem Soc 135(4):1438–1444.  https://doi.org/10.1021/ja309812z CrossRefGoogle Scholar
  48. Leung YH, Ng A, Xu X, Shen Z, Gethings LA, Wong MT, Chan C, Guo MY, Ng YH, Djurišić YB (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183.  https://doi.org/10.1002/smll.201302434 CrossRefGoogle Scholar
  49. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173.  https://doi.org/10.1021/nn300934k CrossRefGoogle Scholar
  50. Lim EK, Chung BH, Chung SJ (2018) Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets 19(4):300–317.  https://doi.org/10.2174/1389450117666160602202339 CrossRefGoogle Scholar
  51. Lin L, Lin W, Zhu YX, Zhao BY, Xie YC (2005) Phosphor-doped titania- a novel photocatalyst active in visible light. Chem Lett 34:284–285.  https://doi.org/10.1246/cl.2005.284 CrossRefGoogle Scholar
  52. Liu J-L, Zhang W-J, Li X-D, Yang N, Pan W-S, Kong J, Zhang J-S (2016) Sustained-release Genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth. Int J Opthalmol 9(5):643–649.  https://doi.org/10.18240/ijo.2016.05.01 CrossRefGoogle Scholar
  53. Luan B, Huynh T, Zhou R (2016) Complete wetting of graphene by biological lipids. Nanoscale 8(10):5750–5754.  https://doi.org/10.1039/C6NR00202A CrossRefGoogle Scholar
  54. Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802.  https://doi.org/10.1021/bc100070g CrossRefGoogle Scholar
  55. Mahapatra OM, Bhagat C, Gopalakrishnan KD, Arunachalam (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3:185–193.  https://doi.org/10.1080/17458080802395460 CrossRefGoogle Scholar
  56. Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A (2013) Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9(23):4069–4076.  https://doi.org/10.1002/smll.201301081 CrossRefGoogle Scholar
  57. Manyasree D, Kiranmayi P, Kumar R (2018) Synthesis, characterization and antibacterial activity of aluminium oxide nanoparticles. Int J Pharm Pharm Sci 10(1):32–35.  https://doi.org/10.22159/ijpps.2018v10i1.20636 CrossRefGoogle Scholar
  58. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551.  https://doi.org/10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  59. Markowska K, Grudniak AM, Wolska KI (2013) Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol 60(4):523–530. http://www.actabp.pl/pdf/4_2013/523.pdf Google Scholar
  60. Matthew L, Kromer JM, Matthew L, Adam K, Zachary TG, Burton HS, Sara M, Alex Y, Joaquin RL, Paramaconi R (2017) High throughput preparation of metal oxide nanocrystals by cathodic corrosion and their use as active photocatalysts. Langmuir 33(46):13295–13302.  https://doi.org/10.1021/acs.langmuir.7b0246531Oct2017
  61. Mehmood S, Rehman MA, Ismail H, Mirza B, Bhatti AS (2015) Significance of post growth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int J Nanomed 10:4521–4533.  https://doi.org/10.2147/IJN.S83356 CrossRefGoogle Scholar
  62. Melian JAH, Rodriguez JMD, Suarez AV, Rendon ET, Valdes C, Arana J, Perez P (2000) The photocatalytic disinfection of urban waste waters. Chemosphere 41:323–327.  https://doi.org/10.1016/S0045-6535(99)00502-0 CrossRefGoogle Scholar
  63. Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Geng N, Yao Y, Luv B, Yang Y, You G, Xu Y (2016) Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Bioresour Technol 216:537–544.  https://doi.org/10.1016/j.biortech.2016.05.082 CrossRefGoogle Scholar
  64. Miller KJ (1971) An introduction to semiconductor surfaces as catalysts. J Chem Educ 48:582–586.  https://doi.org/10.1021/ed048p582 CrossRefGoogle Scholar
  65. Muhling M, Bradford A, Readman JW, Somerfield PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 68(5):278–283.  https://doi.org/10.1016/j.marenvres.2009.07.001 CrossRefGoogle Scholar
  66. Nalage SR, Navale ST, Mane RS et al (2015) Preparation of camphor-sulfonic acid doped PPy-NiO hybrid nanocomposite for detection of toxic nitrogen dioxide. Synth Met 209:426–433.  https://doi.org/10.1016/j.synthmet.2015.08.018 CrossRefGoogle Scholar
  67. Niemirowicz K, Swiecicka I, Wilczewska AZ, Misztalewska I, Kalska-Szostko B, Bienias K, Bucki R, Car H (2014) Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int J Nanomedicine 9:2217–2224.  https://doi.org/10.2147/IJN.S56588. eCollection 2014CrossRefGoogle Scholar
  68. Padmavathy N, Vijayaraghavan R (2011) Interaction of ZnO nanopar-ticles with microbes – a physio and biochemical assay. J Biomed Nanotechnol 7(6):813–822.  https://doi.org/10.1166/jbn.2011.1343 CrossRefGoogle Scholar
  69. Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5(3):1137–1142.  https://doi.org/10.1021/am302910q CrossRefGoogle Scholar
  70. Pan F, Xu A, Xia D, Yu Y, Chen G, Meyer M, Zhao D, Huang CH, Wu Q, Fu J (2015) Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Res 87:127–136.  https://doi.org/10.1016/j.watres.2015.09.022 CrossRefGoogle Scholar
  71. Park CH, Zhang SB, Wei SH (2002) Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys Rev B 66:073202–073207.  https://doi.org/10.1103/PhysRevB.66.073202 CrossRefGoogle Scholar
  72. Pedro HCC, Kestur GS, Fernando W (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39.  https://doi.org/10.1590/S1516-14392009000100002 CrossRefGoogle Scholar
  73. Peng Z, Ni J, Zheng K, Shen Y, Wang X, He G, Jin S, Tang T (2013) Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Int J Nanomedicine 8:3093–3105.  https://doi.org/10.2147/IJN.S48084. Epub 2013 Aug 14CrossRefGoogle Scholar
  74. Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45(8):3367–3373.  https://doi.org/10.1021/es103450g CrossRefGoogle Scholar
  75. Prasannakumar JB, Vidya KS, Anantharaju G, Ramgopal H, Nagabhushana SC, Sharma B, Daruka Prasad SC, Prashantha RB, Basavaraj H, Rajanaik KL (2015) Bio-mediated route for the synthesis of shape tunable Y2O3:Tb3+ nanoparticles: photoluminescence and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 151:131–140.  https://doi.org/10.1016/j.saa.2015.06.081 CrossRefGoogle Scholar
  76. Pulicherla Y, Thirumalanadhuni V, Palempalli UMD, Nataru S (2017) Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl Nanosci 7:417–427.  https://doi.org/10.1007/s13204-017-0584-9 CrossRefGoogle Scholar
  77. Qi G, Li L, Yu F, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5(21):10874–10881.  https://doi.org/10.1021/am403940d CrossRefGoogle Scholar
  78. Qin J, Zhang X, Yang C, Song A, Zhang B, Saravanan R, Ma M, Liu R (2016) Effect of Ag+ and PO4 3− ratios on the microstructure and photocatalytic activity of Ag3PO4. Funct Mater Lett 9(5):1650063. http://www.worldscientific.com/doi/abs/10.1142/S1793604716500636 CrossRefGoogle Scholar
  79. Qin J, Yang C, Cao M, Zhang X, Saravanan R, Limpanart S, Mab M, Liu R (2017) Two-dimensional porous sheet-like carbon-doped ZnO/g-C3N4nanocomposite with high visible-light photocatalytic performance. Mater Lett 189:156–159. http://www.sciencedirect.com/science/article/pii/S0167577X16318912 CrossRefGoogle Scholar
  80. Qiu XF, Zhao YX, Burda C (2007) Synthesis and characterization of nitrogen-doped group IVB visible-light-photoactive metal oxide nanoparticles. Adv Mater 19:3995–3999.  https://doi.org/10.1002/adma.200700511 CrossRefGoogle Scholar
  81. Rajendar V, Shilpa CCH, Rajitha B, Venkateswara RK, Chandra Sekhar M, Purusottam RB, Si-Hyun P (2017) Effect of TWEEN 80 on the morphology and antibacterial properties of ZnO nanoparticles. J Mater Sci Mater Electron 28:3272–3277.  https://doi.org/10.1007/s10854-016-5919-x CrossRefGoogle Scholar
  82. Rajendran S, Manoj D, Raju K et al (2018) Influence of mesoporous defect induced mixed-valent NiO (Ni2+/Ni3+)-TiO2 nanocomposite for non-enzymatic glucose biosensors. Sens Actuators B Chem 264:27–37.  https://doi.org/10.1016/j.snb.2018.02.165 CrossRefGoogle Scholar
  83. Ranghar S (2012) Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol 57:209–222.  https://doi.org/10.1590/S1516-89132013005000011 CrossRefGoogle Scholar
  84. Rao MC, Ravindranadha K, Rose Mary T (2013) Development of ZnO nanoparticles for clinical applications. J Chem Biol Phys Sci 4:469–473. www.jcbsc.org/admin/get_filephy.php?id=154 Google Scholar
  85. Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M (2015) TiO2 nanotube composite layers as delivery system for ZnO and Ag ­nanoparticles – an unexpected overdose effect decreasing their antibacterial efficacy. Mater Sci Eng C Mater Biol Appl 51:158–166.  https://doi.org/10.1016/j.msec.2015.02.046 CrossRefGoogle Scholar
  86. Roy AS, Parveen A, Koppalkar AR, Prasad M (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1:37–41.  https://doi.org/10.4236/jbnb.2010.11005 CrossRefGoogle Scholar
  87. Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Biol Med 5:282–286.  https://doi.org/10.1016/j.nano.2009.01.002 CrossRefGoogle Scholar
  88. Saito T, Iwase T, Horie J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semicon-ductor TiO2 on Mutans streptococci. J Photochem Photobiol B 14:369–379.  https://doi.org/10.1016/1011-1344(92)85115-B CrossRefGoogle Scholar
  89. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed Eng 42:4908–4911.  https://doi.org/10.1002/anie.200351577 CrossRefGoogle Scholar
  90. Saliani M, Jalal R, Kafshdare Goharshadi E (2015) Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157:H7 and Staphylococcus aureus. Jundish J Microbio 8(2):e17115.  https://doi.org/10.5812/jjm.17115 CrossRefGoogle Scholar
  91. Saravanakkumar D, Sivaranjani S, Kaviyarasu K, Ayeshamariam A, Ravikumar B, Pandiarajan S, Veeralakshmi C, Jayachandran M, Maaza M (2018) Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation. J Semicond 39(3):1–7.  https://doi.org/10.1088/1674-4926/39/3/032001 CrossRefGoogle Scholar
  92. Saravanan R, Gupta VK, Narayanan V, Stephen A (2013a) Comparatives studies on photocatalytic activity of ZnO prepared by different methods. J Mol Liq 181:133–141. http://www.sciencedirect.com/science/article/pii/S0167732213000810 CrossRefGoogle Scholar
  93. Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013b) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liq 177:394–401. http://www.sciencedirect.com/science/article/pii/S0167732212003662 CrossRefGoogle Scholar
  94. Saravanan R, Prakash T, Gupta VK, Narayanan V, Stephen A (2013c) Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liq 178:88–93. http://www.sciencedirect.com/science/article/pii/S0167732212004114 CrossRefGoogle Scholar
  95. Saravanan R, Gupta VK, Edgar M, Gracia F (2014) Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liq 198:409–412. http://www.sciencedirect.com/science/article/pii/S0167732214003432 CrossRefGoogle Scholar
  96. Saravanan R, Khan MM, Gracia F, Qin J, Gupta VK, Stephen A (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Nature-Sci Rep 6:31641. http://www.nature.com/articles/srep31641 Google Scholar
  97. Saravanan R, Aviles J, Gracia F, Mosquera E, Vinod KG (2018a) Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. Int J Biol Macromole 109:1239–1245. https://www.sciencedirect.com/science/article/pii/S0141813017323450 CrossRefGoogle Scholar
  98. Saravanan R, Tuan KA, Hoang RB, Diaz-Droguett DE, Gracia F, Gracia-Pinilla MA, Akbari-Fakhrabadi A, Vinod KG (2018b) Hydrogen adsorption properties of Ag decorated TiO2 nanomaterials. Int J Hydro Ener 43(5):2861–2868. https://www.sciencedirect.com/science/article/pii/S0360319917347195 CrossRefGoogle Scholar
  99. Sarwar A, Katas H, Samsudin SN, Zin NM (2015) Regioselective sequential modification of chitosan via azide-alkyne click reaction: synthesis, characterization, and antimicrobial activity of ahitosan derivatives and nanoparticles. PLoS One 10(4):e0123084.  https://doi.org/10.1371/journal.pone.0123084 CrossRefGoogle Scholar
  100. Sathyanarayanan MB, Balachandranath R, Genji SY, Kannaiyan SK, Subbiahdoss G (2013) The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol 2013:1–5.  https://doi.org/10.1155/2013/272086 CrossRefGoogle Scholar
  101. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182.  https://doi.org/10.1016/S0167-7012(03)00037-X CrossRefGoogle Scholar
  102. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194.  https://doi.org/10.1023/A:1008916209784 CrossRefGoogle Scholar
  103. Schmidt D, Shah D, Giannelis EP (2002) New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci 6(3):205–212.  https://doi.org/10.1016/S1359-0286(02)00049-9 CrossRefGoogle Scholar
  104. Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH (2013) Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces 5(19):9322–9329.  https://doi.org/10.1021/am402618w CrossRefGoogle Scholar
  105. Sokemen M, Degerli S, Aslan A (2008) Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Exp Parasitol 119:44–48.  https://doi.org/10.1016/j.exppara.2007.12.014 CrossRefGoogle Scholar
  106. Sondi B, Salopek-Sondi (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182.  https://doi.org/10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  107. Su Y, Zheng X, Chen Y, Li M, Liu K (2015) Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci Rep 5:15824.  https://doi.org/10.1038/srep15824 CrossRefGoogle Scholar
  108. Sukhorukova IV, Sheveyko AN, Kiryukhantsev-Korneev PV, Zhitnyak IY, Gloushankova NA, Denisenko EA, Filippovich SY, Ignatov SG, Shtansky DV (2015) Toward bioactive yet antibacterial surfaces. Coll Surf B 135:158–165.  https://doi.org/10.1016/j.colsurfb.2015.06.059 CrossRefGoogle Scholar
  109. Talebian N, Haddad S, Zavvare H (2014) Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: influence of surfactant. J Photochem Photobio B Biol 130:132–139.  https://doi.org/10.1016/j.jphotobiol.2013.10.018 CrossRefGoogle Scholar
  110. Tetsuya S, Kentaro T, Tsunehiro T (2011) A unique photo-activation mechanism by “in situ doping” for photo-assisted selective NO reduction with ammonia over TiO2 and photooxidation of alcohols over Nb2O5. Catal Sci Technol 1:541–551.  https://doi.org/10.1039/c1cy00104c CrossRefGoogle Scholar
  111. Thakur M, Sharma G, Ahamad T et al (2017) Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf B Biointerfaces 157:456–463.  https://doi.org/10.1016/j.colsurfb.2017.06.018 CrossRefGoogle Scholar
  112. Thangaraj P, Saravanan R, Balasubramanian K, Gracia F, Mansilla HD, Gracia-Pinilla MA, Viswanathan MR (2017) Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties. J Mater Sci Mater Electron 28:2448–2457. https://www.springerprofessional.de/sonochemical-synthesis-of-cuo-nanostructures-and-their-morpholog/10871786 CrossRefGoogle Scholar
  113. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456.  https://doi.org/10.1063/1.1493647 CrossRefGoogle Scholar
  114. Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A, Jupille J, Delmas B (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res 15:1–10.  https://doi.org/10.1007/s11051-013-1595-4 CrossRefGoogle Scholar
  115. Wang YQ, Cheng HM, Hao YZ, Ma JM, Li WH, Cai SM (1999) Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes. Thin Solid Films 349:120–125.  https://doi.org/10.1016/S0040-6090(99)00239-4 CrossRefGoogle Scholar
  116. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249.  https://doi.org/10.2147/IJN.S121956 CrossRefGoogle Scholar
  117. Wehling J, Dringen R, Zare R, Mass M, Rezwan K (2014) Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 8(6):6475–6483.  https://doi.org/10.1021/nn502230m CrossRefGoogle Scholar
  118. Xie Y, He Y, Irwin PL, Jin SL (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77:2325–2331.  https://doi.org/10.1128/AEM.02149-10 CrossRefGoogle Scholar
  119. Xiong MH, Li YJ, Bao Y, Yang XZ, Hu B, Wang J (2012) Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater 24(46):6175–6180.  https://doi.org/10.1002/adma.201202847 CrossRefGoogle Scholar
  120. Xu Y, Wei MT, Ou-Yang HD, Walker SG, Wang HZ, Gordon CR, Guterman S, Zawacki E, Applebaum E, Brink PR, Rafailovich M, Mironava T (2016) Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J Nanobio-Technol 14:34.  https://doi.org/10.1186/s12951-016-0184-y CrossRefGoogle Scholar
  121. Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B 173:208–212.  https://doi.org/10.1016/j.mseb.2009.12.007 CrossRefGoogle Scholar
  122. Yu J, Zhang W, Li Y (2014) Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed Mater 10(1):015001.  https://doi.org/10.1088/1748-6041/10/1/015001 CrossRefGoogle Scholar
  123. Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 6:26667.  https://doi.org/10.1038/srep26667 CrossRefGoogle Scholar
  124. Zakharova OV, Godymchuk AY, Gusev AA, Gulchenko SI, Vasyukova IA, Kuznetsov DV (2015) Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes. Biomed Res Int 2015:412–530.  https://doi.org/10.1155/2015/412530 CrossRefGoogle Scholar
  125. Zaleska A (2008) Doped-TiO2: a review. Recent Pat Eng 2:157–164.  https://doi.org/10.2174/187221208786306289 CrossRefGoogle Scholar
  126. Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids—A potential antibacterial agent. Prog Nat Sci 18:939–944.  https://doi.org/10.1016/j.pnsc.2008.01.026 CrossRefGoogle Scholar
  127. Zhou Y, Li L, Zhou Q, Yuan S, Wu Y, Zhao H, Wu H (2015) Lack of efficacy of prophylactic application of antibiotic-loaded bone cement for prevention of infection in primary total knee arthroplasty: results of a meta-analysis. Surg Infect 16(2):183–187.  https://doi.org/10.1089/sur.2014.044 CrossRefGoogle Scholar
  128. Zhukova LV (2015) Evidence for compression of Escherichia coli K12 cells under the effect of TiO2 nanoparticles. ACS Appl Mater Interfaces 7(49):27197–27205.  https://doi.org/10.1021/acsami.5b08042 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Krishnapriya Madhu Varier
    • 1
    • 2
  • Wuling Liu
    • 3
    • 4
  • Yaacov Ben-David
    • 3
    • 4
  • Yanmei Li
    • 3
    • 4
  • Arulvasu Chinnasamy
    • 2
  • Babu Gajendran
    • 3
    • 4
  1. 1.Department of Medical Biochemistry, Dr. ALM PGIBMSUniversity of MadrasChennaiIndia
  2. 2.Department of ZoologyUniversity of MadrasChennaiIndia
  3. 3.Department of Biology and ChemistryThe Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of SciencesGuizhouChina
  4. 4.State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina

Personalised recommendations