Advertisement

Electrochemical Aspects for Wastewater Treatment

  • A. Dennyson Savariraj
  • R. V. Mangalaraja
  • K. Prabakar
  • C. Viswanathan
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 35)

Abstract

Water has been an inevitable part of human life and its civilization, and water contamination is caused by pollution from industrial wastes such as effluents, dyes, and heavy metals and sewage water due to human activities. Therefore, cost-effective treatment of wastewater has to be carried out without giving any by-products. This chapter is aimed at explaining the different ways of electrochemically treating the wastewater and degrading the contaminants. Electrochemical treatment is advantageous over other methods as it is inexpensive and is a green technique. The mechanism of degradation through anodic oxidation has been explained in details. The incorporation of microorganisms toward water treatment and using them for different kinds of sensors to detect the contaminants opens a new window to address this issue. Along with microorganisms, nanomaterials and ionic liquids are also used in sensing the pollutants and in removing and converting them into energy as well.

Keywords

Water contamination Pollution Industrial waste Dyes Heavy metals Electrochemical 

Notes

Acknowledgment

The authors A. Dennyson Savariraj and R.V. Mangalaraja gratefully acknowledge FONDECYT Post-doctoral Project No. 3170640, Government of Chile, Santiago, for the financial assistance.

References

  1. Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Corton E (2015) Analytical applications of microbial fuel cells. Part II: toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens Bioelectron 63:591–601.  https://doi.org/10.1016/j.bios.2014.04.053 CrossRefGoogle Scholar
  2. Ahmad R, Tripathy N, Khan MY, Bhat KS, Ahn M, Hahn Y (2016) Ammonium ion detection in solution using vertically grown ZnO nanorod based field-effect transistor. RSC Adv 6(60):54836–54840.  https://doi.org/10.1039/C6RA09731F CrossRefGoogle Scholar
  3. Ahmad R, Tripathy N, Ahn M, Hahn Y (2017) Development of highly-stable binder-free chemical sensor electrodes for p-nitroaniline detection. J Colloid Interface Sci 494:300–306.  https://doi.org/10.1016/j.jcis.2017.01.099 CrossRefGoogle Scholar
  4. Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101(2):469–475.  https://doi.org/10.1016/j.biortech.2009.07.039 CrossRefGoogle Scholar
  5. Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14(12):1139–1145.  https://doi.org/10.1016/j.jclepro.2004.09.006 CrossRefGoogle Scholar
  6. Alothman ZA, Ali R, Naushad M (2012) Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J 184:238–247.  https://doi.org/10.1016/j.cej.2012.01.048 CrossRefGoogle Scholar
  7. An Z, Zhang H, Wen Q, Chen Z, Du M (2014) Desalination combined with copper(II) removal in a novel microbial desalination cell. Desalination 346:115–121.  https://doi.org/10.1016/j.desal.2014.05.012 CrossRefGoogle Scholar
  8. Anthony JL, Maginn EJ, Brennecke JF (2001) Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B 105(44):10942–10949.  https://doi.org/10.1021/jp0112368 CrossRefGoogle Scholar
  9. Aragay G, Pons J, Merkoci A (2011) Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. J Mater Chem 21(12):4326–4331.  https://doi.org/10.1039/C0JM03751F CrossRefGoogle Scholar
  10. Arends JBA (2017) The next step towards usable microbial bioelectrochemical sensors? Microb Biotechnol 11(1):20–21.  https://doi.org/10.1111/1751-7915.12590 CrossRefGoogle Scholar
  11. Arends JBA, Verstraete W (2012) 100 years of microbial electricity production: three concepts for the future. Microb Biotechno 5(3):333–346.  https://doi.org/10.1111/j.1751-7915.2011.00302.x CrossRefGoogle Scholar
  12. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377.  https://doi.org/10.1016/j.arabjc.2010.07.019 CrossRefGoogle Scholar
  13. Behera K, Pandey S, Kadyan A, Pandey S (2015) Ionic liquid-based optical and electrochemical carbon dioxide sensors. Sensors (Basel) 15(12).  https://doi.org/10.3390/s151229813 CrossRefGoogle Scholar
  14. Bi X, Agarwal A, Yang K (2009) Oligopeptide-modified silicon nanowire arrays as multichannel metal ion sensors. Biosens Bioelectron 24(11):3248–3251.  https://doi.org/10.1016/j.bios.2009.04.007 CrossRefGoogle Scholar
  15. Blum DJW, Hergenroeder R, Parkin GF, Speece RE (1986) Anaerobic treatment of coal conversion wastewater constituents: biodegradability and toxicity. J Water Pollut Control Fed 58(2):122–131.  https://doi.org/10.2307/25042863 CrossRefGoogle Scholar
  16. Boe K, Batstone DJ, Angelidaki I (2006) An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnol Bioeng 96(4):712–721.  https://doi.org/10.1002/bit.21131 CrossRefGoogle Scholar
  17. Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2(5):1466–1470.  https://doi.org/10.1021/am100107k CrossRefGoogle Scholar
  18. Chang H, Johnson DC (1990) Electrocatalysis of anodic oxygen-transfer reactions: activation of electrodes in by addition of bismuth(III) and arsenic(III,V). J Electrochem Soc 137(8):2452–2457.  https://doi.org/10.1149/1.2086959 CrossRefGoogle Scholar
  19. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19(6):607–613.  https://doi.org/10.1016/S0956-5663(03)00272-0 CrossRefGoogle Scholar
  20. Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C, Chen J (2013) Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of bacteria. Nanoscale 5(9):3620–3626.  https://doi.org/10.1039/C3NR00141E CrossRefGoogle Scholar
  21. Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J Hazard Mater 167(1):268–274.  https://doi.org/10.1016/j.jhazmat.2008.12.117 CrossRefGoogle Scholar
  22. Chen K, Lu G, Chang J, Mao S, Yu K, Cui S, Chen J (2012) Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal Chem 84(9):4057–4062.  https://doi.org/10.1021/ac3000336 CrossRefGoogle Scholar
  23. Chen Y, Michael ZP, Kotchey GP, Zhao Y, Star A (2014) Electronic detection of bacteria using holey reduced graphene oxide. ACS Appl Mater Interfaces 6(6):3805–3810.  https://doi.org/10.1021/am500364f CrossRefGoogle Scholar
  24. Cheng S, Wang B, Wang Y (2013) Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour Technol 147:332–337.  https://doi.org/10.1016/j.biortech.2013.08.040 CrossRefGoogle Scholar
  25. Choi C, Cui Y (2012) Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol 107:522–525.  https://doi.org/10.1016/j.biortech.2011.12.058 CrossRefGoogle Scholar
  26. Choi C, Hu N (2013) The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour Technol 133:589–598.  https://doi.org/10.1016/j.biortech.2013.01.143 CrossRefGoogle Scholar
  27. Chouteau C, Dzyadevych S, Chovelon J, Durrieu C (2004) Development of novel conductometric biosensors based on immobilised whole cell microalgae. Biosens Bioelectron 19(9):1089–1096.  https://doi.org/10.1016/j.bios.2003.10.012 CrossRefGoogle Scholar
  28. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360.  https://doi.org/10.1021/es062580r CrossRefGoogle Scholar
  29. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11):1857–1862.  https://doi.org/10.1016/0013-4686(94)85175-1 CrossRefGoogle Scholar
  30. Comninellis C, Pulgarin C (1991) Anodic oxidation of phenol for waste water treatment. J Appl Electrochem 21(8):703–708.  https://doi.org/10.1021/es062580r CrossRefGoogle Scholar
  31. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289.  https://doi.org/10.1126/science.1062711 CrossRefGoogle Scholar
  32. Dakiky M, Nemcova I (2000) Aggregation of o,o׳- Dihydroxy azo Dyes III. Effect of Cationic, Anionic and Non-Ionic Surfactants on the Electronic Spectra of 2-Hydroxy-5-Nitrophenylazo-4-[3-Methyl-1-(4״-sulfophenyl)-5-pyrazolone]. Dyes Pigments 44(3):181–193.  https://doi.org/10.1016/S0143-7208(99)00086-8 CrossRefGoogle Scholar
  33. Darbha GK, Ray A, Ray PC (2007) Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 1(3):208–214.  https://doi.org/10.1021/nn7001954 CrossRefGoogle Scholar
  34. Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130(25):8038–8043.  https://doi.org/10.1021/ja801412b CrossRefGoogle Scholar
  35. Escapa A, Gomez X, Tartakovsky B, Moran A (2012) Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study. Int J Hydrog Energy 37(24):18641–18653.  https://doi.org/10.1016/j.ijhydene.2012.09.157 CrossRefGoogle Scholar
  36. Fan Y, Han S, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5(8):8273–8280.  https://doi.org/10.1039/C2EE21964F CrossRefGoogle Scholar
  37. Fedorak PM, Hrudey SE (1986) Anaerobic treatment of phenolic coal conversion wastewater in semicontinuous cultures. Water Res 20(1):113–122.  https://doi.org/10.1016/0043-1354(86)90222-8 CrossRefGoogle Scholar
  38. Feitkenhauer H, von Sachs J, Meyer U (2002) On-line titration of volatile fatty acids for the process control of anaerobic digestion plants. Water Res 36(1):212–218.  https://doi.org/10.1016/S0043-1354(01)00189-0 CrossRefGoogle Scholar
  39. Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res 37(10):2399–2407.  https://doi.org/10.1016/s0043-1354(03)00026-5 CrossRefGoogle Scholar
  40. Feng Y, Yang L, Liu J, Logan BE (2016) Electrochemical technologies for wastewater treatment and resource reclamation. Environ Sci Water Res Technol 2(5):800–831.  https://doi.org/10.1039/C5EW00289C CrossRefGoogle Scholar
  41. Fitchett BD, Rollins JB, Conboy JC (2005) Interfacial tension and electrocapillary measurements of the room temperature ionic liquid/aqueous interface. Langmuir 21(26):12179–12186.  https://doi.org/10.1021/la051997s CrossRefGoogle Scholar
  42. Freguia S, Rabaey K, Yuan Z, Keller J (2008) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937–7943.  https://doi.org/10.1021/es800482e CrossRefGoogle Scholar
  43. Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101(4):1233–1238.  https://doi.org/10.1016/j.biortech.2009.09.054 CrossRefGoogle Scholar
  44. Fuller J, Carlin RT, Osteryoung RA (1997) The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc 144(11):3881–3886.  https://doi.org/10.1149/1.1838106 CrossRefGoogle Scholar
  45. Galla U, Kritzer P, Bringmann J, Schmieder H (2000) Process for total degradation of organic wastes by mediated electrooxidation. Chem Eng Technol 23(3):230–233.  https://doi.org/10.1002/(SICI)1521-4125(200003)23:3<230::AID-CEAT230>3.0.CO;2-3 CrossRefGoogle Scholar
  46. Gao C, Yu X, Xiong S, Liu J, Huang X (2013) Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem 85(5):2673–2680.  https://doi.org/10.1021/ac303143x CrossRefGoogle Scholar
  47. Gattrell M, Kirk DW (1993) A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. J Electrochem Soc 140(6):1534–1540.  https://doi.org/10.1149/1.2221598 CrossRefGoogle Scholar
  48. Gong J, Zhou T, Song D, Zhang L (2010a) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sens Actuators B Chem 150(2):491–497.  https://doi.org/10.1016/j.snb.2010.09.014 CrossRefGoogle Scholar
  49. Gong J, Zhou T, Song D, Zhang L, Hu X (2010b) Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. Anal Chem 82(2):567–573.  https://doi.org/10.1021/ac901846a CrossRefGoogle Scholar
  50. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108(1):206–237.  https://doi.org/10.1021/cr068040u CrossRefGoogle Scholar
  51. Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39(22):8943–8947.  https://doi.org/10.1021/es050457e CrossRefGoogle Scholar
  52. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31(3).  https://doi.org/10.1029/2003GL018747
  53. Gupta VK, Sadeghi R, Karimi F (2013) A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples. Sensors Actuators B Chem 186:603–609.  https://doi.org/10.1016/j.snb.2013.06.048 CrossRefGoogle Scholar
  54. Habibi MH, Hassanzadeh A, Mahdavi S (2005) The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. J Photochem Photobiol A 172(1):89–96.  https://doi.org/10.1016/j.jphotochem.2004.11.009 CrossRefGoogle Scholar
  55. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108(7):2238–2264.  https://doi.org/10.1021/cr0680686 CrossRefGoogle Scholar
  56. He W, Wallack MJ, Kim K, Zhang X, Yang W, Zhu X, Feng Y, Logan BE (2016) The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant. Water Res 105:351–360.  https://doi.org/10.1016/j.watres.2016.09.008 CrossRefGoogle Scholar
  57. Heijne AT, Liu F, Rvd W, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44(11):4376–4381.  https://doi.org/10.1021/es100526g CrossRefGoogle Scholar
  58. Heijnen HFG, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791. http://www.bloodjournal.org/content/94/11/3791.abstract Google Scholar
  59. Huang C, Yang Z, Lee K, Chang H (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem 119(36):6948–6952.  https://doi.org/10.1002/ange.200700803 CrossRefGoogle Scholar
  60. Huang Y, Dong X, Liu Y, Li L, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362.  https://doi.org/10.1039/C1JM11436K CrossRefGoogle Scholar
  61. Huang L, Li T, Liu C, Quan X, Chen L, Wang A, Chen G (2013) Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour Technol 128:539–546.  https://doi.org/10.1016/j.biortech.2012.11.011 CrossRefGoogle Scholar
  62. Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54.  https://doi.org/10.1016/j.aca.2014.09.010 CrossRefGoogle Scholar
  63. Huang L, Liu Y, Yu L, Quan X, Chen G (2015) A new clean approach for production of cobalt dihydroxide from aqueous co(II) using oxygen-reducing biocathode microbial fuel cells. J Clean Prod 86:441–446.  https://doi.org/10.1016/j.jclepro.2014.08.018 CrossRefGoogle Scholar
  64. Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76(2):301–308.  https://doi.org/10.1016/j.talanta.2008.02.039 CrossRefGoogle Scholar
  65. Injang U, Noyrod P, Siangproh W, Dungchai W, Motomizu S, Chailapakul O (2010) Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal Chim Acta 668(1):54–60.  https://doi.org/10.1016/j.aca.2010.01.018 CrossRefGoogle Scholar
  66. Johnson SK, Houk LL, Feng J, Houk RS, Johnson DC (1999) Electrochemical incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry. Environ Sci Technol 33(15):2638–2644.  https://doi.org/10.1021/es981045r CrossRefGoogle Scholar
  67. Jouanneau S, Recoules L, Durand MJ, Boukabache A, Picot V, Primault Y, Lakel A, Sengelin M, Barillon B, Thouand G (2014) Methods for assessing biochemical oxygen demand (BOD): a review. Water Res 49:62–82.  https://doi.org/10.1016/j.watres.2013.10.066 CrossRefGoogle Scholar
  68. Juttner K, Galla U, Schmieder H (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45(15):2575–2594.  https://doi.org/10.1016/S0013-4686(00)00339-X CrossRefGoogle Scholar
  69. Kalluri J, Arbneshi T, Afrin Khan S, Neely A, Candice P, Varisli B, Washington M, McAfee S, Robinson B, Banerjee S, Singh A, Senapati D, Ray P (2009) Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. Angew Chem 121(51):9848–9851.  https://doi.org/10.1002/anie.200903958 CrossRefGoogle Scholar
  70. Kaur A, Boghani HC, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2014) Inhibition of methane production in microbial fuel cells: operating strategies which select electrogens over methanogens. Bioresour Technol 173:75–81.  https://doi.org/10.1016/j.biortech.2014.09.091 CrossRefGoogle Scholar
  71. Kaur G, Devi P, Kumar M, Thakur A, Bala R, Kumar A (2017) Electrochemical aspects of photocatalysis: Au@FeS2 nanocomposite for removal of industrial pollutant. Phys Chem Chem Phys 19(48):32412–32420.  https://doi.org/10.1039/C7CP06289C CrossRefGoogle Scholar
  72. Kim BH, Chang IS, Cheol Gil G, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25(7):541–545.  https://doi.org/10.1023/A:1022891231369 CrossRefGoogle Scholar
  73. Kim M, Sik Hyun M, Gadd GM, Joo Kim H (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9(12):1323–1328.  https://doi.org/10.1039/b713114c CrossRefGoogle Scholar
  74. Kim TH, Lee J, Hong S (2009) Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J Phys Chem C 113(45):19393–19396.  https://doi.org/10.1021/jp908902k CrossRefGoogle Scholar
  75. Kumar Jena B, Retna Raj C (2008) Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal Chem 80(13):4836–4844.  https://doi.org/10.1021/ac071064w CrossRefGoogle Scholar
  76. Kyo M, Usui-Aoki K, Koga H (2005) Label-free detection of proteins in crude cell lysate with antibody arrays by a surface Plasmon resonance imaging technique. Anal Chem 77(22):7115–7121.  https://doi.org/10.1021/ac050884a CrossRefGoogle Scholar
  77. Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649(2):196–201.  https://doi.org/10.1016/j.aca.2009.07.030 CrossRefGoogle Scholar
  78. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74.  https://doi.org/10.1016/j.bios.2012.11.039 CrossRefGoogle Scholar
  79. Liu W, Cheng S (2014) Microbial fuel cells for energy production from wastewaters: the way toward practical application. J Zhejiang Univ Sci A 15(11):841–861.  https://doi.org/10.1631/jzus.A1400277 CrossRefGoogle Scholar
  80. Liu J, Mattiasson B (2002) Microbial BOD sensors for wastewater analysis. Water Res 36(15):3786–3802.  https://doi.org/10.1016/S0043-1354(02)00101-X CrossRefGoogle Scholar
  81. Liu H, Cheng S, Logan BE (2005a) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662.  https://doi.org/10.1021/es048927c CrossRefGoogle Scholar
  82. Liu H, He P, Li Z, Sun C, Shi L, Liu Y, Zhu G, Li J (2005b) An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 7(12):1357–1363.  https://doi.org/10.1016/j.elecom.2005.09.018 CrossRefGoogle Scholar
  83. Liu L, Yuan Y, Li F, Feng C (2011) In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour Technol 102(3):2468–2473.  https://doi.org/10.1016/j.biortech.2010.11.013 CrossRefGoogle Scholar
  84. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192.  https://doi.org/10.1021/es0605016 CrossRefGoogle Scholar
  85. Lovley DR, Stolz JF, Nord GL Jr, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory Iron-reducing microorganism. Nature 330:252.  https://doi.org/10.1038/330252a0 CrossRefGoogle Scholar
  86. Luo L, Jie J, Zhang W, He Z, Wang J, Yuan G, Zhang W, Wu L, Man C, Lee S (2009) Silicon nanowire sensors for Hg2+ and Cd2+ ions. Appl Phys Lett 94(19):193101.  https://doi.org/10.1063/1.3120281 CrossRefGoogle Scholar
  87. Mao S, Chang J, Zhou G, Chen J (2015) Nanomaterial-enabled rapid detection of water contaminants. Small 11(40):5336–5359.  https://doi.org/10.1002/smll.201500831 CrossRefGoogle Scholar
  88. Marselli B, Garcia-Gomez J, Michaud P-A, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150(3):D79–D83.  https://doi.org/10.1149/1.1553790 CrossRefGoogle Scholar
  89. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340.  https://doi.org/10.1039/B517632H CrossRefGoogle Scholar
  90. Martinez-Huitle CA, Ferro S, De Battisti A (2004) Electrochemical incineration of oxalic acid: role of electrode material. Electrochim Acta 49(22):4027–4034.  https://doi.org/10.1016/j.electacta.2004.01.083 CrossRefGoogle Scholar
  91. Modin O, Aulenta F (2017) Three promising applications of microbial electrochemistry for the water sector. Environ Sci Water Res Technol 3(3):391–402.  https://doi.org/10.1039/C6EW00325G CrossRefGoogle Scholar
  92. Modin O, Gustavsson DJI (2014) Opportunities for microbial electrochemistry in municipal wastewater treatment – an overview. Water Sci Technol 69:1359–1372.  https://doi.org/10.2166/wst.2014.052 CrossRefGoogle Scholar
  93. Murakami Y, Kikuchi T, Yamamura A, Sakaguchi T, Yokoyama K, Ito Y, Takiue M, Uchida H, Katsube T, Tamiya E (1998) An organic pollution sensor based on surface photovoltage. Sensors Actuators B Chem 53(3):163–172.  https://doi.org/10.1016/S0925-4005(99)00010-6 CrossRefGoogle Scholar
  94. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319.  https://doi.org/10.1126/science.240.4857.1319 CrossRefGoogle Scholar
  95. Nabi SA, Naushad M, Bushra R (2009) Synthesis and characterization of a new organic-inorganic Pb2+ selective composite cation exchanger acrylonitrile stannic(IV) tungstate and its analytical applications. Chem Eng J 152:80–87.  https://doi.org/10.1016/j.cej.2009.03.033 CrossRefGoogle Scholar
  96. Naushad M, Alothman ZA, Inamuddin, Javadian H (2015) Removal of Pb(II) from aqueous solution using ethylene diamine tetra acetic acid-Zr(IV) iodate composite cation exchanger: kinetics, isotherms and thermodynamic studies. J Ind Eng Chem 25:35–41.  https://doi.org/10.1016/j.jiec.2014.10.010 CrossRefGoogle Scholar
  97. Pan D, Wang Y, Chen Z, Lou T, Qin W (2009) Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: an electrochemical sensing platform toward heavy metals. Anal Chem 81(12):5088–5094.  https://doi.org/10.1021/ac900417e CrossRefGoogle Scholar
  98. Parameswaran P, Torres C, Lee H, Krajmalnik-Brown R, Rittmann BE (2009) Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol Bioeng 103(3):513–523.  https://doi.org/10.1002/bit.22267 CrossRefGoogle Scholar
  99. Patil S, Harnisch F, Schroder U (2010) Toxicity response of electroactive microbial biofilm – a decisive feature for potential biosensor and power source applications. ChemPhysChem 11(13):2834–2837.  https://doi.org/10.1002/cphc.201000218 CrossRefGoogle Scholar
  100. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150.  https://doi.org/10.1039/B006677J CrossRefGoogle Scholar
  101. Qin B, Luo H, Liu G, Zhang R, Chen S, Hou Y, Luo Y (2012) Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour Technol 121:458–461.  https://doi.org/10.1016/j.biortech.2012.06.068 CrossRefGoogle Scholar
  102. Quinn BM, Ding Z, Moulton R, Bard AJ (2002) Novel electrochemical studies of ionic liquids. Langmuir 18(5):1734–1742.  https://doi.org/10.1021/la011458x CrossRefGoogle Scholar
  103. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298.  https://doi.org/10.1016/j.tibtech.2005.04.008 CrossRefGoogle Scholar
  104. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18.  https://doi.org/10.1038/ismej.2007.4 CrossRefGoogle Scholar
  105. Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution abatement. Academic, San Diego. http://lib.ugent.be/catalog/rug01:000540457 Google Scholar
  106. Rajeshwar K, Ibanez JG, Swain GM (1994) Electrochemistry and the environment. J Appl Electrochem 24(11):1077–1091.  https://doi.org/10.1007/BF00241305 CrossRefGoogle Scholar
  107. Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113(1):123–129.  https://doi.org/10.1016/j.jhazmat.2004.05.039 CrossRefGoogle Scholar
  108. Ramirez-Vargas C, Prado A, Arias C, Carvalho P, Esteve-Nunez A, Brix H (2018) Microbial electrochemical technologies for wastewater treatment: principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands. Water 10(9).  https://doi.org/10.20944/preprints201807.0369.v1
  109. Rocha JHB, Gomes MMS, Santos EV, Moura ECM, Silva DR, Quiroz MA, Martinez-Huitle CA (2014) Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: direct and indirect oxidation. Electrochim Acta 140:419–426.  https://doi.org/10.1016/j.electacta.2014.06.030 CrossRefGoogle Scholar
  110. Rodgers JD, Jedral W, Bunce NJ (1999) Electrochemical oxidation of chlorinated phenols. Environ Sci Technol 33(9):1453–1457.  https://doi.org/10.1021/es9808189 CrossRefGoogle Scholar
  111. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis C (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J Electrochem Soc 148(5):D60–D64.  https://doi.org/10.1149/1.1362545 CrossRefGoogle Scholar
  112. Rosenbaum MA, Franks AE (2014) Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl Microbiol Biotechnol 98(2):509–518.  https://doi.org/10.1007/s00253-013-5396-6 CrossRefGoogle Scholar
  113. Sakaguchi T, Kitagawa K, Ando T, Murakami Y, Morita Y, Yamamura A, Yokoyama K, Tamiya E (2003) A rapid BOD sensing system using luminescent recombinants of Escherichia Coli. Biosens Bioelectron 19(2):115–121.  https://doi.org/10.1016/S0956-5663(03)00170-2 CrossRefGoogle Scholar
  114. Seddon KR (2003) A taste of the future. Nature 2:363.  https://doi.org/10.1038/nmat907 CrossRefGoogle Scholar
  115. Seddon KR, Annegret S, Maria-Jose T (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275.  https://doi.org/10.1351/pac200072122275 CrossRefGoogle Scholar
  116. Shahat A, Awual MR, Naushad M (2015) Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chem Eng J 271:155–163.  https://doi.org/10.1016/j.cej.2015.02.097 CrossRefGoogle Scholar
  117. Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X (2014) A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 140:191–208.  https://doi.org/10.1016/j.electacta.2014.02.111 CrossRefGoogle Scholar
  118. Shen Y, Zhang Y, Qiu X, Guo H, Niu L, Ivaska A (2007) Polyelectrolyte-functionalized ionic liquid for electrochemistry in supporting electrolyte-free aqueous solutions and application in amperometric flow injection analysis. Green Chem 9(7):746–753.  https://doi.org/10.1039/B616452H CrossRefGoogle Scholar
  119. So H, Park D, Jeon E, Kim Y, Kim BS, Lee C, Choi SY, Kim SC, Chang H, Lee J (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4(2):197–201.  https://doi.org/10.1002/smll.200700664 CrossRefGoogle Scholar
  120. Socha A, Chrzescijanska E, Kusmierek E (2005) Electrochemical and photoelectrochemical treatment of 1-aminonaphthalene-3,6-disulphonic acid. Dyes Pigments 67(1):71–75.  https://doi.org/10.1016/j.dyepig.2004.10.012 CrossRefGoogle Scholar
  121. Stein NE, Hamelers HVM, van Straten G, Keesman KJ (2012) Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. Biosensors 2(3):255.  https://doi.org/10.3390/bios2030255 CrossRefGoogle Scholar
  122. Sudibya HG, He Q, Zhang H, Chen P (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):1990–1994.  https://doi.org/10.1021/nn103043v CrossRefGoogle Scholar
  123. Suidan MT, Strubler CE, Kao S, Pfeffer JT (1983) Treatment of coal gasification wastewater with anaerobic filter technology. Biotechnol Bioeng 55(10):1263–1270.  https://doi.org/10.1002/bit.260250612 CrossRefGoogle Scholar
  124. Sun J, Sun S, Fan M, Guo H, Qiao L, Sun R (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148(1):172–177.  https://doi.org/10.1016/j.jhazmat.2007.02.022 CrossRefGoogle Scholar
  125. Tao H, Liang M, Li W, Zhang L, Ni J, Wu W (2011) Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J Hazard Mater 189(1):186–192.  https://doi.org/10.1016/j.jhazmat.2011.02.018 CrossRefGoogle Scholar
  126. Tiwari D (2016) Ferrate(VI) a greener solution: synthesis, characterization, and multifunctional use in treating metal-complexed species in aqueous solution. In: Anonymous, Ferrites and ferrates: chemistry and applications in sustainable energy and environmental remediation, American Chemical Society 1238(7):161–220.  https://doi.org/10.1021/bk-2016-1238.ch007 Google Scholar
  127. Torres RA, Torres W, Peringer P, Pulgarin C (2003) Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes.: attempt of a structure-reactivity relationship assessment. Chemosphere 50(1):97–104.  https://doi.org/10.1016/S0045-6535(02)00487-3 CrossRefGoogle Scholar
  128. Van der Bruggen B, Vogels G, Van Herck P, Vandecasteele C (1998) Simulation of acid washing of municipal solid waste incineration Fly ashes in order to remove heavy metals. J Hazard Mater 57(1):127–144.  https://doi.org/10.1016/S0304-3894(97)00078-2 CrossRefGoogle Scholar
  129. Varia J, Zegeye A, Roy S, Yahaya S, Bull S (2014) Shewanella Putrefaciens for the remediation of Au3+, Co2+ and Fe3+ metal ions from aqueous systems. Biochem Eng J 85:101–109.  https://doi.org/10.1016/j.bej.2014.02.002 CrossRefGoogle Scholar
  130. Villagran C, Banks CE, Hardacre C, Compton RG (2004) Electroanalytical determination of trace chloride in room-temperature ionic liquids. Anal Chem 76(7):1998–2003.  https://doi.org/10.1021/ac030375d CrossRefGoogle Scholar
  131. Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of Lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20(17):3263–3267.  https://doi.org/10.1002/adma.200703181 CrossRefGoogle Scholar
  132. Wasserscheid P (2006) Volatile times for ionic liquids. Nature 439:797.  https://doi.org/10.1038/439797a CrossRefGoogle Scholar
  133. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135.  https://doi.org/10.1016/j.aca.2007.12.011 CrossRefGoogle Scholar
  134. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084.  https://doi.org/10.1021/cr980032t CrossRefGoogle Scholar
  135. Wen Y, Li FY, Dong X, Zhang J, Xiong Q, Chen P (2013) The electrical detection of Lead ions using gold-nanoparticle- and DNAzyme-functionalized graphene device. Adv Healthc Mater 2(2):271–274.  https://doi.org/10.1002/adhm.201200220 CrossRefGoogle Scholar
  136. Woodworth JG, Munday BL, Campin D (1998) Evaluation of biomarkers for exposure of fish to eucalypt-based pulp mill effluent and for determination of routes of exposure. Environ Toxicol Water Qual 13(4):285–296.  https://doi.org/10.1002/(SICI)1098-2256(1998)13:4<285::AID-TOX2>3.0.CO;2-3 CrossRefGoogle Scholar
  137. Wu D, Huang L, Quan X, Li Puma G (2016) Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells. J Power Sources 307:705–714.  https://doi.org/10.1016/j.jpowsour.2016.01.022 CrossRefGoogle Scholar
  138. Xu H, Zeng L, Xing S, Shi G, Xian Y, Jin L (2008) Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). Electrochem Commun 10(12):1839–1843.  https://doi.org/10.1016/j.elecom.2008.09.030 CrossRefGoogle Scholar
  139. Xu R, Yu X, Gao C, Jiang Y, Han D, Liu J, Huang X (2013) Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: the use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection. Anal Chim Acta 790:31–38.  https://doi.org/10.1016/j.aca.2013.06.040 CrossRefGoogle Scholar
  140. Yang H, Zhou M, Liu M, Yang W, Gu T (2015) Microbial fuel cells for biosensor applications. Biotechnol Lett 37(12):2357–2364.  https://doi.org/10.1007/s10529-015-1929-7 CrossRefGoogle Scholar
  141. Yu P, Lin Y, Xiang L, Su L, Zhang J, Mao L (2005) Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications. Langmuir 21(20):9000–9006.  https://doi.org/10.1021/la051089v CrossRefGoogle Scholar
  142. Yu C, Guo Y, Liu H, Yan N, Xu Z, Yu G, Fang Y, Liu Y (2013) Ultrasensitive and selective sensing of heavy metal ions with modified graphene. Chem Commun 49(58):6492–6494.  https://doi.org/10.1039/C3CC42377H CrossRefGoogle Scholar
  143. Yuan S, Peng D, Song D, Gong J (2013) Layered titanate nanosheets as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sensors Actuators B Chem 181:432–438.  https://doi.org/10.1016/j.snb.2013.01.092 CrossRefGoogle Scholar
  144. Zhang B, Zhao H, Shi C, Zhou S, Ni J (2009) Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J Chem Technol Biotechnol 84(12):1780–1786.  https://doi.org/10.1002/jctb.2244 CrossRefGoogle Scholar
  145. Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y (2010) Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett 10(11):4738–4741.  https://doi.org/10.1021/nl1032556 CrossRefGoogle Scholar
  146. Zhou G, Chang J, Cui S, Pu H, Wen Z, Chen J (2014) Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl Mater Interfaces 6(21):19235–19241.  https://doi.org/10.1021/am505275a CrossRefGoogle Scholar
  147. Zhu H, Xu Y, Liu A, Kong N, Shan F, Yang W, Barrow CJ, Liu J (2015) Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors Actuators B Chem 206:592–600.  https://doi.org/10.1016/j.snb.2014.10.009 CrossRefGoogle Scholar
  148. Zou Z, Han J, Jang A, Bishop PL, Ahn CH (2007) A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate. Biosens Bioelectron 22(9):1902–1907.  https://doi.org/10.1016/j.bios.2006.08.004 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Dennyson Savariraj
    • 1
  • R. V. Mangalaraja
    • 1
    • 2
  • K. Prabakar
    • 3
  • C. Viswanathan
    • 4
  1. 1.Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of EngineeringUniversity of ConcepcionConcepcionChile
  2. 2.Technological Development Unit (UDT)University of ConcepcionCoronelChile
  3. 3.Department of Electrical and Computer EngineeringPusan National UniversityBusanSouth Korea
  4. 4.Department of Nanoscience and TechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations