Advertisement

Progression in Fenton Process for the Wastewater Treatment

  • S. Kaviya
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 35)

Abstract

The presence of industrial contaminants in water bodies leads unfit for domestic and irrigation process. The contaminated water treatment becomes even more problematical if the process encompasses high volumes of effluents. Advanced oxidation process (AOP) is a favorable technique for the wastewater treatment owing to its eco-friendly processing. This chapter gives a detailed discussion about the classical Fenton process; its progress/modifications such as photo-Fenton, microbially driven Fenton, electro-Fenton, and sono-Fenton and their combinations; and different nanocomposite materials used for this process.

Keywords

Fenton process Wastewater treatment Advanced oxidation process Classification of Fenton Photo-Fenton Electro-Fenton Sono-Fenton Microbially driven Fenton Electro-photo-Fenton Sono-electro-Fenton Sono-photo-Fenton 

Notes

Acknowledgments

S.K. thanks SERB, Govt. of India, for SERB-National postdoctoral fellowship and Dr. S. Venugopal, Assistant professor, Department of Chemical Engineering, Indian Institute of Science (IISc), for his constant support.

References

  1. Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Cat Sci Technol 6(4):1222–1232.  https://doi.org/10.1039/C5CY01494H CrossRefGoogle Scholar
  2. Altin A (2008) An alternative type of photoelectro-Fenton process for the treatment of landfill leachate. Sep Purif Technol 61(3):391–397.  https://doi.org/10.1016/j.seppur.2007.12.004 CrossRefGoogle Scholar
  3. Arimi MM (2017) Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Prog Nat Sci Mater Int 27(2):275–282.  https://doi.org/10.1016/j.pnsc.2017.02.001 CrossRefGoogle Scholar
  4. Awual MR, Hasan MM, Naushad M et al (2015) Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sensors Actuators B Chem 209:790–797.  https://doi.org/10.1016/j.snb.2014.12.053 CrossRefGoogle Scholar
  5. Barroso M, Cowan AJ, Pendlebury SR, Gratzel M, Klug DR, Durrant JR (2011) The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J Am Chem Soc 133(38):14868–14871.  https://doi.org/10.1021/ja205325v CrossRefGoogle Scholar
  6. Byrne JA, Ibanez PAF, Dunlop PSM, Alrousan DMA, Hamilton JWJ (2011) Photocatalytic enhancement for solar disinfection of water: a review. Int J Photoenergy 2011:798051–798063.  https://doi.org/10.1155/2011/798051 CrossRefGoogle Scholar
  7. Cai C, Zhang Z, Liu J, Shan N, Zhang H, Dionysiou DD (2016) Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Appl Catal B Environ 182:456–468.  https://doi.org/10.1016/j.apcatb.2015.09.056 CrossRefGoogle Scholar
  8. Campos BG, Acosta DM, Ramirez AH, Mar JLG, Reyes LH, Manriquez J, Ruiz EJR (2018) Air diffusion electrodes based on synthetized mesoporous carbon for application in amoxicillin degradation by electro-Fenton and solar photo electro-Fenton. Electrochim Acta 269:232–240.  https://doi.org/10.1016/j.electacta.2018.02.139 CrossRefGoogle Scholar
  9. Cetinkaya SG, Morcali MH, Akarsu S, Ziba CA, Dolaz M (2018) Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustain Environ Res 28(4):165–170.  https://doi.org/10.1016/j.serj.2018.02.001 CrossRefGoogle Scholar
  10. Chakma S, Moholkar VS (2014) Investigations in synergism of hybrid advanced oxidation processes with combinations of sonolysis + Fenton Process + UV for degradation of bisphenol A. Ind Eng Chem Res 53(16):6855–6865.  https://doi.org/10.1021/ie500474f CrossRefGoogle Scholar
  11. Chauhan NL, Das J, Jasra RV, Parikh PA, Murthy ZVP (2012) Synthesis of small-sized ZSM-5 zeolites employing mixed structure directing agents. Mater Lett 74:115–117.  https://doi.org/10.1016/j.matlet.2012.01.094 CrossRefGoogle Scholar
  12. Chen WS, Huang CP (2014) Decomposition of nitrotoluenes in wastewater by sonoelectrochemical and sonoelectro-Fenton oxidation. Ultrason Sonochem 21(2):840–845.  https://doi.org/10.1016/j.ultsonch.2013.10.026 CrossRefGoogle Scholar
  13. Chen F, Li Y, Cai W, Zhang J (2010) Preparation and sono-Fenton performance of 4A-zeolite supported α-Fe2O3. J Hazard Mater 177(1–3):743–749.  https://doi.org/10.1016/j.jhazmat.2009.12.094 CrossRefGoogle Scholar
  14. Chen W, Zou C, Li X, Li L (2016) The treatment of phenolic contaminants from shale gas drilling wastewater: a comparison with UV-Fenton and modified UV-Fenton processes at neutral pH. RSC Adv 6(93):90682–90689.  https://doi.org/10.1039/c6ra18662a CrossRefGoogle Scholar
  15. Davididou K, Monteagudo JM, Chatzisymeon E, Duran A, Exposito AJ (2017) Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate. Sep Purif Technol 172:227–235.  https://doi.org/10.1016/j.seppur.2016.08.021 CrossRefGoogle Scholar
  16. Deng F, Rodriguez OG, Vargas HO, Qiu S, Lefebvre O, Yang J (2018) Iron-foam as a heterogeneous catalyst in the presence of tripolyphosphate electrolyte for improving electro-Fenton oxidation capability. Electrochim Acta 272:176–183.  https://doi.org/10.1016/j.electacta.2018.03.160 CrossRefGoogle Scholar
  17. Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H (2012) Metal nanoparticles as heterogeneous Fenton catalyst. ChemSusChem 5(1):46–64.  https://doi.org/10.1002/cssc.201100517 CrossRefGoogle Scholar
  18. Dukkanci M (2018) Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst. Ultrason Sonochem 40:110–116.  https://doi.org/10.1016/j.ultsonch.2017.04.040 CrossRefGoogle Scholar
  19. Escher BI, Bramaz N, Richter M, Lienert J (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environ Sci Technol 40(23):7402–7408.  https://doi.org/10.1021/es052572v CrossRefGoogle Scholar
  20. Espinosa JC, Navalon S, Alvaro M, Garcia H (2016) Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction. Cat Sci Technol 6(19):7077–7085.  https://doi.org/10.1039/C6CY00572A CrossRefGoogle Scholar
  21. Espinosa JC, Catalaa C, Navalona S, Ferrera B, Alvaroa M, Garcia H (2018) Iron oxide nanoparticles supported on diamond nanoparticles as efficient and stable catalyst for the visible light assisted Fenton reaction. Appl Catal B Environ 226:242–251.  https://doi.org/10.1016/j.apcatb.2017.12.060 CrossRefGoogle Scholar
  22. Exposito AJ, Monteagudo JM, Duran A, Fernandez A (2017) Dynamic behavior of hydroxyl radical in sono-photo-Fenton mineralization of synthetic municipal wastewater effluent containing antipyrine. Ultrason Sonochem 35:185–195.  https://doi.org/10.1016/j.ultsonch.2016.09.017 CrossRefGoogle Scholar
  23. Exposito AJ, Monteagudo JM, Duran A, Martin IS, Gonzalez L (2018) Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound. J Hazard Mater 342:597–605.  https://doi.org/10.1016/j.jhazmat.2017.08.069 CrossRefGoogle Scholar
  24. Faust B, Hoigne J (1990) Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos Environ A 24(1):79–89.  https://doi.org/10.1016/0960-1686(90)90443-Q CrossRefGoogle Scholar
  25. Gao Y, Wang Y, Zhang H (2015) Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Appl Catal B 178:29–36.  https://doi.org/10.1016/j.apcatb.2014.11.005 CrossRefGoogle Scholar
  26. Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y (2014a) A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: kinetics, equilibrium and thermodynamic studies. J Ind Eng Chem 20:454–461.  https://doi.org/10.1016/j.jiec.2013.05.002 CrossRefGoogle Scholar
  27. Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y (2014b) Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: adsorption isotherm and kinetic studies. J Ind Eng Chem 20:2193–2199.  https://doi.org/10.1016/j.jiec.2013.09.050 CrossRefGoogle Scholar
  28. Giannakis S, Lopez MIP, Spuhler D, Perez JAS, Ibanez PF, Pulgarin C (2016) Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction – Part 1: A review of bacterial inactivation by hν/H2O2/Fe, at near-neutral pH. Appl Catal B 199:431–446.  https://doi.org/10.1016/j.apcatb.2016.06.009 CrossRefGoogle Scholar
  29. GilPavas E, Gomez ID, Garcia MAG (2018) Optimization of solar-driven photo-electro-Fenton process for the treatment of textile industrial wastewater. J Water Process Eng 24:49–55.  https://doi.org/10.1016/j.jwpe.2018.05.007 CrossRefGoogle Scholar
  30. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3–4):501–551.  https://doi.org/10.1016/S1093-0191(03)00032-7 CrossRefGoogle Scholar
  31. Gomez EO, Garcia BE, Martin MMB, Ibanez PF, Perez JAS (2014) Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Res 63:316–324.  https://doi.org/10.1016/j.watres.2014.05.034 CrossRefGoogle Scholar
  32. Gonzalez MC, Braun AM (1995) VUV photolysis of aqueous solutions of nitrate and nitrite. Res Chem Intermed 21(8–9):837–859.  https://doi.org/10.1163/156856795X00512 CrossRefGoogle Scholar
  33. Goyes REP, Arenas JV, Palma ART, Ostos C, Ferraro F, Gonzalez I (2015) The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2-ZrO2 anodes in a filter-press FM01-LC reactor. Electrochim Acta 174:735–744.  https://doi.org/10.1016/j.electacta.2015.06.037 CrossRefGoogle Scholar
  34. Gu C, Wang J, Liu S, Liu G, Lu H, Jin R (2016) Biogenic Fenton-like reaction involvement in cometabolic degradation of tetrabromobisphenol A by Pseudomonas sp. fz. Environ Sci Technol 50(18):9981–9989.  https://doi.org/10.1021/acs.est.6b02116 CrossRefGoogle Scholar
  35. Gumus D, Akbal F (2016) Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Process Saf Environ Prot 103:252–258.  https://doi.org/10.1016/j.psep.2016.07.008 CrossRefGoogle Scholar
  36. Guo X, Wang K, Li D, Qin J (2017) Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl Surf Sci 420:792–801.  https://doi.org/10.1016/j.apsusc.2017.05.178 CrossRefGoogle Scholar
  37. Guzman PV, Giannakis S, Rtimi S, Grandjean D, Bensimon M, Alencastro LF, Palma RT, Pulgarin C (2017) A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. Appl Catal B Environ 219:538–549.  https://doi.org/10.1016/j.apcatb.2017.07.066 CrossRefGoogle Scholar
  38. Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246(2):501–524.  https://doi.org/10.1016/0003-9861(86)90305-X CrossRefGoogle Scholar
  39. Hartmann M, Kullmanna S, Keller H (2010) Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J Mater Chem 20(41):9002–9017.  https://doi.org/10.1039/C0JM00577K CrossRefGoogle Scholar
  40. Hasan Z, Jhung SH (2015) Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazard Mater 283:329–339.  https://doi.org/10.1016/j.jhazmat.2014.09.046 CrossRefGoogle Scholar
  41. Hassan H, Hameed BH (2011) Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chem Eng J 171(3):912–918.  https://doi.org/10.1016/j.cej.2011.04.040 CrossRefGoogle Scholar
  42. Hassani A, Karaca C, Karaca SS, Khataee A, Acisli O, Yılmaz B (2018a) Enhanced removal of basic violet 10 by heterogeneous sono-Fenton process sing magnetite nanoparticles. Ultrason Sonochem 42:390–402.  https://doi.org/10.1016/j.ultsonch.2017.11.036 CrossRefGoogle Scholar
  43. Hassani A, Çelikdag G, Eghbali P, Sevim M, Karaca S, Metin O (2018b) Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason Sonochem 40:841–852.  https://doi.org/10.1016/j.ultsonch.2017.08.026 CrossRefGoogle Scholar
  44. Hassani A, Karaca M, Karaca S, Khataee A, Acisli O, Yılmaz B (2018c) Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. J Environ Manag 211:53–62.  https://doi.org/10.1016/j.jenvman.2018.01.014 CrossRefGoogle Scholar
  45. Hou Y, Li XY, Zhao QD, Chen GH (2013) ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Appl Catal B Environ 142–143:80–88.  https://doi.org/10.1016/j.apcatb.2013.04.062 CrossRefGoogle Scholar
  46. Huang Z, Wu P, Li H, Li W, Zhua Y, Zhu N (2014) Synthesis and catalytic properties of La or Ce doped hydroxy-FeAl intercalated montmorillonite used as heterogeneous photo Fenton catalysts under sunlight irradiation. RSC Adv 4(13):6500–6507.  https://doi.org/10.1039/c3ra46729e CrossRefGoogle Scholar
  47. Huitle CAM, Brillas E (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603–643.  https://doi.org/10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  48. Ibanez JA, Litter MI, Pizarro RA (2003) Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae comparative study with other Gram (−) bacteria. J Photochem Photobiol A 157(1):81–85.  https://doi.org/10.1016/S1010-6030(03)00074-1 CrossRefGoogle Scholar
  49. Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M, Barzegar G (2018) The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. J Mol Liq 256:62–470.  https://doi.org/10.1016/j.molliq.2018.02.047 CrossRefGoogle Scholar
  50. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050.  https://doi.org/10.1021/es0520924 CrossRefGoogle Scholar
  51. Kaviya S, Prasad E (2015a) Biogenic synthesis of ZnO-Ag nano custard apple for efficient photocatalytic degradation of methylene blue by sunlight irradiation. RSC Adv 5(22):17179–17185.  https://doi.org/10.1039/C4RA15293J CrossRefGoogle Scholar
  52. Kaviya S, Prasad E (2015b) Sequential detection of Fe3+ and As3+ ions by biosynthesized AuNPs: a study of aggregation and disaggregation process. Anal Methods 7(1):168–174.  https://doi.org/10.1039/C4AY02342K CrossRefGoogle Scholar
  53. Kaviya S, Prasad E (2016) Eco-friendly synthesis of ZnO Nano pencils in aqueous medium: a study of photocatalytic degradation of methylene blue under direct sunlight. RSC Adv 6(40):33821–33827.  https://doi.org/10.1039/C6RA04306B CrossRefGoogle Scholar
  54. Khataee A, Khataee A, Fathinia M, Vahid B, Joo SW (2013) Kinetic modeling of photoassisted-electrochemical process for degradation of an azo dye using boron-doped diamond anode and cathode with carbon nanotubes. J Ind Eng Chem 19(6):1890–1894.  https://doi.org/10.1016/j.jiec.2013.02.037 CrossRefGoogle Scholar
  55. Khataee A, Rad TS, Vahid B, Khorram S (2016) Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process. Ultrason Sonochem 33:37–46.  https://doi.org/10.1016/j.ultsonch.2016.04.015 CrossRefGoogle Scholar
  56. Khatri I, Singh S, Garg A (2018) Performance of electro-Fenton process for phenol removal using Iron electrodes and activated carbon. J Environ Chem Eng 6:7368.  https://doi.org/10.1016/j.jece.2018.08.022 CrossRefGoogle Scholar
  57. Kim SM, Vogelpohl A (1998) Degradation of organic pollutants by the photo-Fenton-process. Chem Eng Technol 21:187–191.  https://doi.org/10.1002/(SICI)1521-4125(199802)21:2<187::AID-CEAT187>3.0.CO;2-H CrossRefGoogle Scholar
  58. Kim CG, Seo HJ, Lee BR (2006) Decomposition of 1,4-dioxane by advanced oxidation and biochemical process. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(4):599–611.  https://doi.org/10.1080/10934520600574807 CrossRefGoogle Scholar
  59. Kruger O, Schulze TL, Peters D (1999) Sonochemical treatment of natural ground water at different high frequencies: preliminary results. Ultrason Sonochem 6(1–2):123–128.  https://doi.org/10.1016/S1350-4177(98)00031-5 CrossRefGoogle Scholar
  60. Lam FLY, Hu X (2007) A high performance bimetallic catalyst for photo-Fenton oxidation of Orange II over a wide pH range. Catal Commun 8(12):2125–2129.  https://doi.org/10.1016/j.catcom.2007.04.025 CrossRefGoogle Scholar
  61. Lasso AM, Pulgarin C, Benitez N (2008) Degradation of DBPs’ precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor. Water Res 42(15):4125–4132.  https://doi.org/10.1016/j.watres.2008.07.014 CrossRefGoogle Scholar
  62. Lasso AM, Arismendi LEM, Herrera JAR, Sanabria J, Benitez N, Pulgarin C (2012) The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light. Photochem Photobiol Sci 11(5):821–827.  https://doi.org/10.1039/c2pp05290c CrossRefGoogle Scholar
  63. Lee C, Sedlak DL (2009) A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. J Mol Catal A Chem 311(1–2):1–6.  https://doi.org/10.1016/j.molcata.2009.07.001 CrossRefGoogle Scholar
  64. Li H, Lei H, Yu Q, Li Z, Feng X, Yang B (2010) Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL. Chem Eng J 160(2):417–422.  https://doi.org/10.1016/j.cej.2010.03.027 CrossRefGoogle Scholar
  65. Li G, Jiang B, Li X, Lian ZC, Xiao SN, Zhu J, Zhang DQ, Li HX (2013) C60/Bi2TiO4F2 heterojunction photocatalysts with enhanced visible-light activity for environmental remediation. ACS App Mater Interfaces 5(15):7190–7197.  https://doi.org/10.1021/am401525m CrossRefGoogle Scholar
  66. Li G, Qiu S, Ma F, Jia Y, Jiang X (2018) Degradation of RhB by a sono-Fenton-like process with an iron-foam in the presence of oxalic acid. Anal Methods 10(32):3976–3983.  https://doi.org/10.1039/c8ay00839f CrossRefGoogle Scholar
  67. Lim H, Lee J, Jin S, Kim J, Yoon J, Hyeon T (2006) Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem Commun 28(4):463–465.  https://doi.org/10.1039/B513517F CrossRefGoogle Scholar
  68. Liu Y, Mao Y, Tang X, Xu Y, Li C, Li F (2017) Synthesis of Ag/AgCl/Fe-S plasmonic catalyst for bisphenol A degradation in heterogeneous photo-Fenton system under visible light irradiation. Chin J Catal 38(10):1726–1735.  https://doi.org/10.1016/S1872-2067(17)62902-4 CrossRefGoogle Scholar
  69. Liu Z, Zhang L, Dong F, Dang J, Wang K, Wu D, Zhang J, Fang J (2018) Preparation of ultra-small goethite nanorods and their application as heterogeneous Fenton reaction catalysts in the degradation of azo dyes. ACS Appl Nano Mater 1(8):4170–4178.  https://doi.org/10.1021/acsanm.8b00930 CrossRefGoogle Scholar
  70. Lonfat CR, Barona JF, Sienkiewicz A, Velez J, Benitez LN, Pulgarin C (2016) Bacterial inactivation with iron citrate complex: a new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH. Appl Catal B Environ 180:379–390.  https://doi.org/10.1016/j.apcatb.2015.06.030 CrossRefGoogle Scholar
  71. Lv H, Ma L, Zeng P, Ke D, Peng T (2010) Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J Mater Chem 20(18):3665–3672.  https://doi.org/10.1039/B919897K CrossRefGoogle Scholar
  72. Mackulak T, Mosny M, Grabic R, Golovko O, Koba O, Birosova L (2015) Fenton- like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ Toxicol Pharmacol 39(2):483–488.  https://doi.org/10.1016/j.etap.2014.12.016 CrossRefGoogle Scholar
  73. Malakootian M, Moridi A (2017) Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions. Process Saf Environ Prot 111:138–147.  https://doi.org/10.1016/j.psep.2017.06.008 CrossRefGoogle Scholar
  74. Manu B, Mahamood S (2011) Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation. Water Sci Technol 64(12):2433–2438.  https://doi.org/10.2166/wst.2011.804 CrossRefGoogle Scholar
  75. Matamoros V, Arias CA, Nguyen LX, Salvado V, Brix H (2012) Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere 88(9):1083–1089.  https://doi.org/10.1016/j.chemosphere.2012.04.048 CrossRefGoogle Scholar
  76. Mckinzi AM, DiChristina TJ (1999) Microbially driven Fenton reaction for transformation of pentachlorophenol. Environ Sci Technol 33(11):1886–1891.  https://doi.org/10.1021/es980810z CrossRefGoogle Scholar
  77. Miller CM, Valentine RL, Roehl MC, Alvarez PJJ (1996) Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton’s reagent. Water Res 30(11):2579–2586.  https://doi.org/10.1016/S0043-1354(96)00151-0 CrossRefGoogle Scholar
  78. Minella M, Marchetti G, Laurentiis ED, Malandrino M, Maurino V, Minero C, Vione D, Hanna K (2014) Photo-Fenton oxidation of phenol with magnetite as iron source. Appl Catal B Environ 154–155:102–109.  https://doi.org/10.1016/j.apcatb.2014.02.006 CrossRefGoogle Scholar
  79. Montilla F, Michaud PA, Morallon E, Vazquez JL, Comninellis C (2002) Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim Acta 47(21):3509–3513.  https://doi.org/10.1016/S0013-4686(02)00318-3 CrossRefGoogle Scholar
  80. Moussavi G, Hossaini H, Jafari SJ, Farokhi M (2014) Comparing the efficacy of UVC, UVC/ZnO and VUV processes for oxidation of organophosphate pesticides in water. J Photochem Photobiol A 290:86–93.  https://doi.org/10.1016/j.jphotochem.2014.06.010 CrossRefGoogle Scholar
  81. Naushad M, Alothman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53:2158–2166.  https://doi.org/10.1080/19443994.2013.862744 CrossRefGoogle Scholar
  82. Obra IDL, Garcia BE, Sanchez JLG, Lopez JLC, Perez JAS (2017) Low cost UVA-LED as a radiation source for the photo-Fenton process: a new approach for micropollutant removal from urban wastewater. Photochem Photobiol Sci 16(1):72–78.  https://doi.org/10.1039/c6pp00245e CrossRefGoogle Scholar
  83. Oppenlander T (2003) Photochemical purification of water and air. Wiley VCH, WeinheimGoogle Scholar
  84. Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications – a review. Crit Rev Environ Sci Technol 44(23):2577–2641.  https://doi.org/10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  85. Oturan MA, Sires I, Oturan N, Perocheau S, Laborde JL, Trevin S (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624(1–2):329–332.  https://doi.org/10.1016/j.jelechem.2008.08.005 CrossRefGoogle Scholar
  86. Perez JF, Sabatino S, Galia A, Rodrigo MA, Llanos J, Saez C, Scialdone O (2018) Effect of air pressure on the electro-Fenton process at carbon felt electrodes. Electrochim Acta 273:447–453.  https://doi.org/10.1016/j.electacta.2018.04.031 CrossRefGoogle Scholar
  87. Pham ALT, Lee C, Doyle FM, Sedlak DL (2009) A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ Sci Technol 43(23):8930–8935.  https://doi.org/10.1021/es902296k CrossRefGoogle Scholar
  88. Phan TTN, Nikoloski AN, Bahri PA, Li D (2018) Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light. J Ind Eng Chem 61:53–64.  https://doi.org/10.1016/j.jiec.2017.11.046 CrossRefGoogle Scholar
  89. Pourakbar M, Moussavi G, Shekoohiyan S (2016) Homogenous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water. Ecotoxicol Environ Saf 125:72–77.  https://doi.org/10.1016/j.ecoenv.2015.11.040 CrossRefGoogle Scholar
  90. Pradhan AC, Parida KM (2012) Facile synthesis of mesoporous composite Fe/Al2O3-MCM-41: an efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes. J Mater Chem 22(15):7567–7579.  https://doi.org/10.1039/C2JM30451A CrossRefGoogle Scholar
  91. Pradhan GK, Sahu N, Parida KM (2013) Fabrication of S, N co-doped α-Fe2O3 nanostructures: effect of doping, OH radical formation, surface area, [110] plane and particle size on the photocatalytic activity. RSC Adv 3(21):7912–7920.  https://doi.org/10.1039/C3RA23088K CrossRefGoogle Scholar
  92. Pradhan AC, Sahoo MK, Bellamkonda S, Parida KM, Rao GR (2016) Enhanced photodegradation of dyes and mixed dyes by heterogeneous mesoporous Co–Fe/Al2O3-MCM-41 nanocomposites: nanoparticles formation, semiconductor behavior and mesoporosity. RSC Adv 6(96):94263–94277.  https://doi.org/10.1039/C6RA19923B CrossRefGoogle Scholar
  93. Qin Q, Liu Y, Li X, Suna T, Xu Y (2018) Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O. RSC Adv 8(2):1071–1077.  https://doi.org/10.1039/C7RA12488K CrossRefGoogle Scholar
  94. Ramirez JH, Hodar FJM, Cadenas AFP, Castilla CM, Costa CA, Madeira LM (2007) Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl Catal B Environ 75(3–4):312–323.  https://doi.org/10.1016/j.apcatb.2007.05.003 CrossRefGoogle Scholar
  95. Ramirez JH, Vicente MA, Madeira LM (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl Catal B Environ 98(1–2):10–26.  https://doi.org/10.1016/j.apcatb.2010.05.004 CrossRefGoogle Scholar
  96. Rezgui S, Amranea A, Fourcadea F, Assadia A, Monserb L, Adhoum N (2018) Electro-Fenton catalyzed with magnetic chitosan beads for the removal of chlordimeform insecticide. Appl Catal B Environ 226:346–359.  https://doi.org/10.1016/j.apcatb.2017.12.061 CrossRefGoogle Scholar
  97. Riverohuguet M, Marshall WD (2009) Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Chemosphere 76(9):1240–1248.  https://doi.org/10.1016/j.chemosphere.2009.05.040 CrossRefGoogle Scholar
  98. Rodriguez OG, Lee YY, Vargas HO, Deng F, Wang Z, Lefebvre O (2018) Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode. Electrochim Acta 276:12–20.  https://doi.org/10.1016/j.electacta.2018.04.076 CrossRefGoogle Scholar
  99. Ruppert G, Bauer R, Heisler G (1993) The photo-Fenton reaction – an effective photochemical wastewater treatment process. J Photochem Photobiol A73(1):75–78.  https://doi.org/10.1016/1010-6030(93)80035-8 CrossRefGoogle Scholar
  100. Sabhi S, Kiwi J (2001) Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res 35(8):1994–2002.  https://doi.org/10.1016/S0043-1354(00)00460-7 CrossRefGoogle Scholar
  101. Sahinkaya S (2013) COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. J Ind Eng Chem 19(2):601–605.  https://doi.org/10.1016/j.jiec.2012.09.023 CrossRefGoogle Scholar
  102. Samakchi S, Chaibakhsh N, Shoeili ZM (2018) Synthesis of MoS2/MnFe2O4 nanocomposite with highly efficient catalytic performance in visible light photo-Fenton-like process. J Photochem Photobiol A Chem 367:420–428.  https://doi.org/10.1016/j.jphotochem.2018.09.003 CrossRefGoogle Scholar
  103. Segura Y, Molina R, Martínez F, Melero JA (2009) Integrated heterogeneous sono-photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrason Sonochem 16(3):417–424.  https://doi.org/10.1016/j.ultsonch.2008.10.004 CrossRefGoogle Scholar
  104. Sekar R, DiChristina TJ (2014) Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Environ Sci Technol 48(21):12858–12867.  https://doi.org/10.1021/es503454a CrossRefGoogle Scholar
  105. Senn AM, Russo YM, Litter MI (2014) Treatment of wastewater from an alkaline cleaning solution by combined coagulation and photo-Fenton processes. Sep Purif Technol 132(6):552–560.  https://doi.org/10.1016/j.seppur.2014.06.006 CrossRefGoogle Scholar
  106. Serra A, Domenech X, Brillas E, Peral J (2011) Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous α-methylphenylglycine. J Environ Monit 13(1):167–174.  https://doi.org/10.1039/c0em00552e CrossRefGoogle Scholar
  107. Shao P, Tian J, Liu B, Shi W, Gao S, Song Y, Ling M, Cui F (2015) Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system. Nanoscale 7(34):14254–14263.  https://doi.org/10.1039/C5NR03042K CrossRefGoogle Scholar
  108. Stefan MI, Bolton JR (1998) Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV hydrogen peroxide process. Environ Sci Technol 32(11):1588–1595.  https://doi.org/10.1021/es970633m CrossRefGoogle Scholar
  109. Steffan R (2007) Biodegradation of 1,4-dioxane. SERDP, AugustGoogle Scholar
  110. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley, New YorkGoogle Scholar
  111. Tabai A, Bechiri Q, Abbessi M (2017) Degradation of organic dye using a new homogeneous Fenton-like system based on hydrogen peroxide and a recyclable Dawson-type heteropolyanion. Int J Ind Chem 8(1):83–89.  https://doi.org/10.1007/s40090-016-0104-x CrossRefGoogle Scholar
  112. Tan X, Lu L, Wang L, Zhang J (2015) Facile synthesis of bimodal mesoporous Fe3O4@SiO2 composite for efficient removal of methylene blue. Eur J Inorg Chem 2015(18):2928–2933.  https://doi.org/10.1002/ejic.201500267 CrossRefGoogle Scholar
  113. Torres RA, Petrier C, Combet E, Moulet F, Pulgarin C (2007) Bisphenol A mineralization by integrated ultrasound-UV-iron (II) treatment. Environ Sci Technol 41(1):297–302.  https://doi.org/10.1021/es061440e CrossRefGoogle Scholar
  114. Vaishnave P, Kumar A, Ameta R, Punjabi PB, Ameta SC (2014) Photo oxidative degradation of azure-B by sono-photo-Fenton and photo-Fenton reagents. Arab J Chem 7(6):981–985.  https://doi.org/10.1016/j.arabjc.2010.12.019 CrossRefGoogle Scholar
  115. Velasquez M, Santander IP, Contreras DR, Yanez J, Zaror C, Salazar RA, Moya MP, Mansilla HD (2014) Oxidative degradation of sulfathiazole by Fenton and photo-Fenton reactions. J Environ Sci Health A 49(6):661–670.  https://doi.org/10.1080/10934529.2014.865447 CrossRefGoogle Scholar
  116. Veloutsou S, Bizani E, Fytianos K (2014) Photo-Fenton decomposition of β-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates. Chemosphere 107:180–186.  https://doi.org/10.1016/j.chemosphere.2013.12.031 CrossRefGoogle Scholar
  117. Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42(3):251–325.  https://doi.org/10.1080/10643389.2010.507698 CrossRefGoogle Scholar
  118. Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrog Energy 39(28):16179–16186.  https://doi.org/10.1016/j.ijhydene.2013.12.120 CrossRefGoogle Scholar
  119. Wang W, Jiao T, Zhang Q, Luo X, Hu J, Chen Y, Peng Q, Yan X, Li B (2015) Hydrothermal synthesis of hierarchical core-shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment. RSC Adv 5(69):56279–56285.  https://doi.org/10.1039/C5RA08678G CrossRefGoogle Scholar
  120. Wang W, Lu Y, Luo H, Liu G, Zhang R, Jin S (2018) A microbial electro-Fenton cell for removing carbamazepine in wastewater with electricity output. Water Res 139:58–65.  https://doi.org/10.1016/j.watres.2018.03.066 CrossRefGoogle Scholar
  121. Weng CH, Lin YT, Chang CK, Liu N (2013) Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrason Sonochem 20(3):970–977.  https://doi.org/10.1016/j.ultsonch.2012.09.014 CrossRefGoogle Scholar
  122. Xu LJ, Chu W, Graham N (2014) Degradation of di-n-butyl phthalate by a homogeneous sono-photo-Fenton process with in situ generated hydrogen peroxide. Chem Eng J 240:541–547.  https://doi.org/10.1016/j.cej.2013.10.087 CrossRefGoogle Scholar
  123. Xu YQ, Huang SQ, Xie M, Li YP, Jing LQ, Xu H, Zhang Q, Li HM (2016) Core–shell magnetic Ag/AgCl@Fe2O3 photocatalysts with enhanced photoactivity for eliminating bisphenol A and microbial contamination. New J Chem 40(4):3413–3422.  https://doi.org/10.1039/C5NJ02898A CrossRefGoogle Scholar
  124. Yan L, Liu J, Feng Z, Zhao P (2016) Continuous degradation of BTEX in landfill gas by the UV-Fenton reaction. RSC Adv 6(2):1452–1459.  https://doi.org/10.1039/c5ra22585j CrossRefGoogle Scholar
  125. Yang CW (2015) Degradation of bisphenol A using electrochemical assistant Fe (II) activated peroxydisulfate process. Water Sci Technol 8(2):139–144.  https://doi.org/10.1016/j.wse.2015.04.002 CrossRefGoogle Scholar
  126. Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Sci Rep 5:10632–10642. Article number: 10632CrossRefGoogle Scholar
  127. Yang H, Zhou M, Yang W, Ren G, Ma L (2018) Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid. Chemosphere 206:439–446.  https://doi.org/10.1016/j.chemosphere.2018.05.027 CrossRefGoogle Scholar
  128. Zhang H, Fu H, Zhang D (2009) Degradation of CI Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process. J Hazard Mater 172(2–3):654–660.  https://doi.org/10.1016/j.jhazmat.2009.07.047 CrossRefGoogle Scholar
  129. Zhang CH, Ai LH, Jiang J (2015) Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J Mater Chem A 3(6):3074–3081.  https://doi.org/10.1039/C4TA04622F CrossRefGoogle Scholar
  130. Zhang Z, Meng H, Wang Y, Shi L, Wang X, Chai S (2018) Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in Electro-Fenton process. Electrochim Acta 260:112–120.  https://doi.org/10.1016/j.electacta.2017.11.048 CrossRefGoogle Scholar
  131. Zhao Y, Jiangyong H, Chen H (2010) Elimination of estrogen and its estrogenicity by heterogeneous photo-Fenton catalyst β-FeOOH/resin. J Photochem Photobiol A 212(2–3):94–100.  https://doi.org/10.1016/j.jphotochem.2010.04.001 CrossRefGoogle Scholar
  132. Zhao Y, Pan F, Li H, Niu T, Xu G, Chen W (2013) Facile synthesis of uniform α-Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction. J Mater Chem A 1(24):7242–7246.  https://doi.org/10.1039/C3TA10966F CrossRefGoogle Scholar
  133. Zhao H, Chen Y, Peng Q, Wang Q, Zhao G (2017) Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and •OH generation in solar photo–electro–Fenton process. Appl Catal B Environ 203:127–137.  https://doi.org/10.1016/j.apcatb.2016.09.074 CrossRefGoogle Scholar
  134. Zhong X, Royer S, Zhang H, Huang Q, Xiang L, Valange S, Barrault J (2011) Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono–photo-Fenton process. Sep Purif Technol 80(1):163–171.  https://doi.org/10.1016/j.seppur.2011.04.024 CrossRefGoogle Scholar
  135. Zhou Q, Liu Y, Yu G, He F, Chen K, Xiao D, Zhao X, Feng Y, Li J (2017) Degradation kinetics of sodium alginate via sono-Fenton, photo-Fenton and sono-photo-Fenton methods in the presence of TiO2 nanoparticles. Polym Degrad Stab 135:111–120.  https://doi.org/10.1016/j.polymdegradstab.2016.11.012 CrossRefGoogle Scholar
  136. Zhuang H, Hong X, Shan S, Yuan X (2016) Recycling rice straw derived, activated carbon supported, nanoscaled Fe3O4 as a highly efficient catalyst for Fenton oxidation of real coal gasification wastewater. RSC Adv 6(97):95129–95136.  https://doi.org/10.1039/C6RA20952A CrossRefGoogle Scholar
  137. Zou C, Meng Z, Ji W, Liu S, Shen Z, Zhang Y, Jiang N (2018) Preparation of a fullerene[60]-iron oxide complex for the photo-Fenton degradation of organic contaminants under visible-light irradiation. Chin J Catal 39(6):1051–1059.  https://doi.org/10.1016/S1872-2067(18)63067-0 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Kaviya
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Science (IISc)BangaloreIndia

Personalised recommendations