Advertisement

Mesoporous Materials for Degradation of Textile Dyes

  • Diana V. Wellia
  • Yuly Kusumawati
  • Lina J. Diguna
  • Nurul Pratiwi
  • Reza A. Putri
  • Muhamad I. AmalEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 35)

Abstract

The properties needed for photocatalytic applications, such as large specific surface area, controllable pore size and morphology, and high interparticle connectivity, are among that owed by mesoporous materials. These attributes have been attracted researcher to engineer for further enhancement of the surface and to provide diffusion, charge, or light transfer or reactant access into the cavities. The synthesis, structural properties, and catalytic performances of mesoporous materials for degradation of textile dyes will be discussed in this chapter. The development of photocatalytic materials, particularly of porous material including metal-incorporated zeolites, metal–organic frameworks, and porous semiconductor photocatalysts, will be described in the beginning of the chapter and followed by the mechanism of the photocatalytic process. Finally, the issue of future challenge will conclude the discussion.

Keywords

Mesoporous photocatalyst Metal oxide Mesoporous TiO2 Mesoporous ZnO Mesoporous SnO2 Supported photocatalyst Template photocatalyst 

References

  1. Abarna B, Preethi T, Karunanithi A, Rajarajeswari GR (2016) Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide. Mater Sci Semicond Process 56:243–250.  https://doi.org/10.1016/j.mssp.2016.09.004 CrossRefGoogle Scholar
  2. Abdel Messih MF, Ahmed MA, Soltan A, Anis SS (2017) Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes. J Photochem Photobiol A 335:40–51.  https://doi.org/10.1016/j.jphotochem.2016.11.001 CrossRefGoogle Scholar
  3. Acosta-Silva YJ, Nava R, Hernández-Morales V, Macías-Sánchez SA, Gómez-Herrera ML, Pawelec B (2011) Methylene blue photodegradation over titania-decorated SBA-15. Appl Catal B 110:108–117.  https://doi.org/10.1016/j.apcatb.2011.08.032 CrossRefGoogle Scholar
  4. Ahmed MA, Abdel Messih MF, El-Sherbeny EF, El-Hafez SF, Khalifa AMM (2017a) Synthesis of metallic silver nanoparticles decorated mesoporous SnO2 for removal of methylene blue dye by coupling adsorption and photocatalytic processes. J Photochem Photobiol A 346:77–88.  https://doi.org/10.1016/j.jphotochem.2017.05.048 CrossRefGoogle Scholar
  5. Ahmed MA, Abou-Gamra ZM, Salem AM (2017b) Photocatalytic degradation of methylene blue dye over novel spherical mesoporous Cr2O3/TiO2 nanoparticles prepared by sol-gel using octadecylamine template. J Environ Chem Eng 5(5):4251–4261.  https://doi.org/10.1016/j.jece.2017.08.014 CrossRefGoogle Scholar
  6. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2):520–529.  https://doi.org/10.1016/j.jhazmat.2009.05.039 CrossRefGoogle Scholar
  7. Al-Hamdi AM, Rinner U, Sillanpää M (2017) Tin dioxide as a photocatalyst for water treatment: a review. Process Saf Environ Prot 107:190–205.  https://doi.org/10.1016/j.psep.2017.01.022 CrossRefGoogle Scholar
  8. Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183.  https://doi.org/10.1016/j.jenvman.2012.08.028 CrossRefGoogle Scholar
  9. Alosfur FKM, Ridha NJ, Jumali MHH, Radiman S (2018) One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity. Nanotechnology 29(14):145707.  https://doi.org/10.1088/1361-6528/aaabee CrossRefGoogle Scholar
  10. Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J Phys Chem 91(16):4305–4310.  https://doi.org/10.1021/j100300a021 CrossRefGoogle Scholar
  11. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed Mesoporous TiO2 by a modified sol–gel method. Angew Chem Int Ed 34(18):2014–2017.  https://doi.org/10.1002/anie.199520141 CrossRefGoogle Scholar
  12. Areerob Y, Cho JY, Jang WK, Oh WC (2018) Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@SiO2 nanocomposites. Ultrason Sonochem 41:267–278.  https://doi.org/10.1016/j.ultsonch.2017.09.034 CrossRefGoogle Scholar
  13. Bacariza MC, Graça I, Bebiano SS, Lopes JM, Henriques C (2018) Micro- and mesoporous supports for CO2 methanation catalysts: a comparison between SBA-15, MCM-41 and USY zeolite. Chem Eng Sci 175:72–83.  https://doi.org/10.1016/j.ces.2017.09.027 CrossRefGoogle Scholar
  14. Bagheri M, Mahjoub AR (2016) Template assisted fast photocatalytic degradation of azo dye using ferric oxide–gallia nanostructures. RSC Adv 6(90):87555–87563.  https://doi.org/10.1039/C6RA16317C CrossRefGoogle Scholar
  15. Bagheri S, Mohd Hir ZA, Yousefi AT, Abdul Hamid SB (2015) Progress on mesoporous titanium dioxide: synthesis, modification and applications. Microporous Mesoporous Mater 218:206–222.  https://doi.org/10.1016/j.micromeso.2015.05.028 CrossRefGoogle Scholar
  16. Ban J, Xu G, Zhang L, Lin H, Sun Z, Lv Y, Jia Z (2017) Mesoporous ZnO microcube derived from a metal-organic framework as photocatalyst for the degradation of organic dyes. J Solid State Chem 256:151–157.  https://doi.org/10.1016/j.jssc.2017.09.002 CrossRefGoogle Scholar
  17. Bijanzad K, Tadjarodi A, Akhavan O (2015) Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II). Chin J Catal 36(5):742–749.  https://doi.org/10.1016/S1872-2067(14)60305-3 CrossRefGoogle Scholar
  18. Bonelli B, Esposito S, Freyria FS (2017) Mesoporous Titania: synthesis, properties and comparison with non-porous Titania. In: Janus M (ed) Titanium dioxide. Intechopen, London, pp 119–141.  https://doi.org/10.5772/intechopen.68884 CrossRefGoogle Scholar
  19. Bouzid H, Faisal M, Harraz FA, Al-Sayari SA, Ismail AA (2015) Synthesis of mesoporous ag/ZnO nanocrystals with enhanced photocatalytic activity. Catal Today 252:20–26.  https://doi.org/10.1016/j.cattod.2014.10.011 CrossRefGoogle Scholar
  20. Bradshaw D, El-Hankari S, Lupica-Spagnolo L (2014) Supramolecular templating of hierarchically porous metal-organic frameworks. Chem Soc Rev 43(16):5431–5443.  https://doi.org/10.1039/C4CS00127C CrossRefGoogle Scholar
  21. Brinker CJ, Brow RK, Tallant DR, Kirkpatrick RJ (1990) Surface structure and chemistry of high surface area silica gels. J Non-Cryst Solids 120(1):26–33.  https://doi.org/10.1016/0022-3093(90)90187-Q CrossRefGoogle Scholar
  22. Chakma S, Moholkar V (2015) Sonochemical synthesis of mesoporous ZrFe2O5 and its application for degradation of recalcitrant pollutants. RSC Adv 5(66):53529–53542.  https://doi.org/10.1039/C5RA06148B CrossRefGoogle Scholar
  23. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  24. Chen G, Sun M, Wei Q, Zhang Y, Zhu B, Du B (2013) Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water. J Hazard Mater 244–245:86–93.  https://doi.org/10.1016/j.jhazmat.2012.11.032 CrossRefGoogle Scholar
  25. Chen H, Peng YP, Chen KF, Lai CH, Lin YC (2016) Rapid synthesis of Ti-MCM-41 by microwave-assisted hydrothermal method towards photocatalytic degradation of oxytetracycline. J Environ Sci 44:76–87.  https://doi.org/10.1016/j.jes.2015.08.027 CrossRefGoogle Scholar
  26. Chen X, Zhang H, Zhang D, Miao Y, Li G (2018) Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation. Appl Surf Sci 435:468–475.  https://doi.org/10.1016/j.apsusc.2017.11.045 CrossRefGoogle Scholar
  27. Cheng G, Xu F, Stadler FJ, Chen R (2015) A facile and general synthesis strategy to doped TiO2 nanoaggregates with a mesoporous structure and comparable property. RSC Adv 5(79):64293–64298.  https://doi.org/10.1039/C5RA11099H CrossRefGoogle Scholar
  28. Chou TP, Fryxell GE, Li XS, Cao G (2004) Development of titania nanostructures for the exploration of electron transport in dye-sensitized solar cells. Proc SPIE Nanophotonic Mater 5510.  https://doi.org/10.1117/12.563083
  29. Chowdhury IH, Ghosh S, Naskar MK (2016) Aqueous-based synthesis of mesoporous TiO2 and ag–TiO2 nanopowders for efficient photodegradation of methylene blue. Ceram Int 42(2, Part A):2488–2496.  https://doi.org/10.1016/j.ceramint.2015.10.049 CrossRefGoogle Scholar
  30. Collard X, El-Hajj M, Su BL, Aprile C (2014) Synthesis of novel mesoporous ZnO/SiO2 composites for the photodegradation of organic dyes. Microporous Mesoporous Mater 184:90–96.  https://doi.org/10.1016/j.micromeso.2013.09.040 CrossRefGoogle Scholar
  31. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6):2373–2420.  https://doi.org/10.1021/cr960406n CrossRefGoogle Scholar
  32. Das SK, Bhunia MK, Bhaumik A (2010) Highly ordered Ti-SBA-15: efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation. J Solid State Chem 183(6):1326–1333.  https://doi.org/10.1016/j.jssc.2010.04.015 CrossRefGoogle Scholar
  33. Dash SK, Parida K, Rath D (2015) Synthesis of a mesoporous silica. In: Alio M (ed) A comprehensive guide to Mesoporous silica, 1st edn. Nova Publication, New York, pp 43–67Google Scholar
  34. Dhiman P, Naushad M, Batoo KM et al (2017) Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol a from aqueous environment. J Clean Prod 165:1542–1556.  https://doi.org/10.1016/j.jclepro.2017.07.245 CrossRefGoogle Scholar
  35. Diguna LJ, Murakami M, Sato A, Kumagai Y, Ishihara T, Kobayashi N, Shen Q, Toyoda T (2006) Photoacoustic and Photoelectrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots. Jpn J Appl Phys 45(6S):5563–5568.  https://doi.org/10.1143/JJAP.45.5563 CrossRefGoogle Scholar
  36. Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007a) High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 91(2):023116.  https://doi.org/10.1063/1.2757130 CrossRefGoogle Scholar
  37. Diguna LJ, Shen Q, Sato A, Katayama K, Sawada T, Toyoda T (2007b) Optical absorption and ultrafast carrier dynamics characterization of CdSe quantum dots deposited on different morphologies of nanostructured TiO2 films. Mater Sci Eng C 27(5):1514–1520.  https://doi.org/10.1016/j.msec.2006.06.036 CrossRefGoogle Scholar
  38. Ding H, Sun H, Shan Y (2005) Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. J Photochem Photobiol A 169(1):101–107.  https://doi.org/10.1016/j.jphotochem.2004.04.015 CrossRefGoogle Scholar
  39. Djurisic AB, Leung YH, Ng AMC (2014) Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horiz 1(4):400–410.  https://doi.org/10.1039/C4MH00031E CrossRefGoogle Scholar
  40. Dong Y, Fei X, Zhang H, Yu L (2015) Effects of calcination process on photocatalytic activity of TiO2/MCM-41 Photocatalyst. J Adv Oxid Technol 18:322–330.  https://doi.org/10.1515/jaots-2015-0219 CrossRefGoogle Scholar
  41. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable Superhydrophobicity of TiO2 Nanorod films. Angew Chem Int Ed 44(32):5115–5118.  https://doi.org/10.1002/anie.200501337 CrossRefGoogle Scholar
  42. Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H (2017) Controlling photocatalytic activity and size selectivity of TiO2 encapsulated in hollow silica spheres by tuning silica shell structures using sacrificial biomolecules. Langmuir 33(25):6314–6321.  https://doi.org/10.1021/acs.langmuir.7b01528 CrossRefGoogle Scholar
  43. Garforth A, Fiddy S, Lin YH, Ghanbari-Siakhali A, Sharratt PN, Dwyer J (1997) Catalytic degradation of high density polyethylene: an evaluation of mesoporous and microporous catalysts using thermal analysis. Thermochim Acta 294(1):65–69.  https://doi.org/10.1016/S0040-6031(96)03145-0 CrossRefGoogle Scholar
  44. Gu D, Schüth F (2014) Synthesis of non-siliceous mesoporous oxides. Chem Soc Rev 43(1):313–344.  https://doi.org/10.1039/C3CS60155B CrossRefGoogle Scholar
  45. Gu L, Chen Z, Sun C, Wei B, Yu X (2010) Photocatalytic degradation of 2, 4-dichlorophenol using granular activated carbon supported TiO2. Desalination 263(1):107–112.  https://doi.org/10.1016/j.desal.2010.06.045 CrossRefGoogle Scholar
  46. He Z, Zhou J (2013) Synthesis, characterization, and activity of tin oxide nanoparticles: influence of solvothermal time on photocatalytic degradation of Rhodamine B. MRC 02(03):13–18.  https://doi.org/10.4236/mrc.2013.23A003 CrossRefGoogle Scholar
  47. He F, Chen G, Yu Y, Zhou Y, Zheng Y, Hao S (2015) The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance. Chem Commun 51(2):425–427.  https://doi.org/10.1039/C4CC07106A CrossRefGoogle Scholar
  48. Hossain MK, Akhtar US, Koirala AR, Hwang IC, Yoon KB (2015) Steam-assisted synthesis of uniformly mesoporous anatase and its remarkably superior photocatalytic activities. Catal Today 243:228–234.  https://doi.org/10.1016/j.cattod.2014.07.045 CrossRefGoogle Scholar
  49. Hsieh SH, Chen WJ, Wu CT (2015) Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Appl Surf Sci 340:9–17.  https://doi.org/10.1016/j.apsusc.2015.02.184 CrossRefGoogle Scholar
  50. Hu E, Wu X, Shang S, Tao XM, Jiang SX, Gan L (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718.  https://doi.org/10.1016/j.jclepro.2015.06.127 CrossRefGoogle Scholar
  51. Hu W, Yuan X, Liu X, Guan Y, Wu X (2017) Hierarchical SnO2 nanostructures as high efficient photocatalysts for the degradation of organic dyes. J Solgel Sci Technol 84(2):316–322.  https://doi.org/10.1007/s10971-017-4511-z CrossRefGoogle Scholar
  52. Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J (2008) Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 77(2):327–334.  https://doi.org/10.1016/j.dyepig.2007.01.026 CrossRefGoogle Scholar
  53. Ilinoiu EC, Pode R, Manea F et al (2013) Photocatalytic activity of a nitrogen-doped TiO2 modified zeolite in the degradation of reactive yellow 125 azo dye. J Taiwan Inst Chem Eng 44(2):270–278.  https://doi.org/10.1016/j.jtice.2012.09.006 CrossRefGoogle Scholar
  54. Ismail AA, Bahnemann DW (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21(32):11686–11707.  https://doi.org/10.1039/C1JM10407A CrossRefGoogle Scholar
  55. Jing Y, Yan W, Xiaowen X (2014) Preparation of Mesoporous SnO2 by electrostatic self-assembly. J Chem 2014:713573.  https://doi.org/10.1155/2014/713573 CrossRefGoogle Scholar
  56. Jung KY, Park SB (1999) Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. J Photochem Photobiol A 127(1):117–122.  https://doi.org/10.1016/S1010-6030(99)00132-X CrossRefGoogle Scholar
  57. Kamegawa T, Ishiguro Y, Seto H, Yamashita H (2015) Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification. J Mater Chem A 3(5):2323–2330.  https://doi.org/10.1039/C4TA06020B CrossRefGoogle Scholar
  58. Kanakaraju D, Kockler J, Motti CA, Glass BD, Oelgemöller M (2015) Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl Catal B 166–167:45–55.  https://doi.org/10.1016/j.apcatb.2014.11.001 CrossRefGoogle Scholar
  59. Karimi Z, Mahjoub AR, Aghdam FD (2009) SBA immobilized phosphomolybdic acid: efficient hybrid mesostructured heterogeneous catalysts. Inorg Chim Acta 362(10):3725–3730.  https://doi.org/10.1016/j.ica.2009.04.029 CrossRefGoogle Scholar
  60. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed 41(15):2811–2813.  https://doi.org/10.1002/1521-3757(20020802)114:15<2935::AID-ANGE2935>3.0.CO;2-6 CrossRefGoogle Scholar
  61. Kayaalp BE, Lee JY, Kornowski A, Gross S, D’Arienzo M, Mascotto S (2016) Cooperative assembly synthesis of mesoporous SrTiO3 with enhanced photocatalytic properties. RSC Adv 6(93):90401–90409.  https://doi.org/10.1039/C6RA13800D CrossRefGoogle Scholar
  62. Kim SH, Olson TY, Satcher JH Jr, Han TYJ (2012) Hierarchical ZnO structures templated with amino acid based surfactants. Microporous Mesoporous Mater 151:64–69.  https://doi.org/10.1016/j.micromeso.2011.11.015 CrossRefGoogle Scholar
  63. Koohsaryan E, Anbia M (2016) Nanosized and hierarchical zeolites: a short review. Chin J Catal 37(4):447–467.  https://doi.org/10.1016/S1872-2067(15)61038-5 CrossRefGoogle Scholar
  64. Kowsari E, Abdpour S (2017) In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO. J Solid State Chem 256:141–150.  https://doi.org/10.1016/j.jssc.2017.08.038 CrossRefGoogle Scholar
  65. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712.  https://doi.org/10.1038/359710a0 CrossRefGoogle Scholar
  66. Lachheb H, Ahmed O, Houas A, Nogier JP (2011) Photocatalytic activity of TiO2–SBA-15 under UV and visible light. J Photochem Photobiol A 226(1):1–8.  https://doi.org/10.1016/j.jphotochem.2011.09.017 CrossRefGoogle Scholar
  67. Lagaly G (1980) K. K. Unger: porous silica — its properties and use as support in column liquid chromatography. Elsevier scientific publishing co., Amsterdam, Oxford, New York 1979. 226 Seiten, Preis: $ 46.25. Ber Bunsenges Phys Chem 84(1):111–111.  https://doi.org/10.1002/bbpc.19800840140 CrossRefGoogle Scholar
  68. Lan H, Wang A, Liu R, Liu H, Qu J (2015) Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. J Hazard Mater 285:167–172.  https://doi.org/10.1016/j.jhazmat.2014.10.057 CrossRefGoogle Scholar
  69. Lázár I, Kalmár J, Peter A, Szilágyi A, Győri E, Ditrói T, Fábián I (2015) Photocatalytic performance of highly amorphous titania–silica aerogels with mesopores: the adverse effect of the in situ adsorption of some organic substrates during photodegradation. Appl Surf Sci 356:521–531.  https://doi.org/10.1016/j.apsusc.2015.08.113 CrossRefGoogle Scholar
  70. Lee J, Kim J, Hyeon T (2003) A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. Chem Commun 10:1138–1139.  https://doi.org/10.1039/B301535A CrossRefGoogle Scholar
  71. Lee S, Lee Y, Kim DH, Moon JH (2013) Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution. Appl Mater Interfaces 5(23):12526–12532.  https://doi.org/10.1021/am403820e CrossRefGoogle Scholar
  72. Lee YY, Moon JH, Choi YS, Park GO, Jin M, Li D, Lee JY, Son SU, Kim JM (2017) Visible-light driven photocatalytic degradation of organic dyes over ordered mesoporous CdxZn1-xS materials. J Phys Chem C 121(9):5137–5144.  https://doi.org/10.1021/acs.jpcc.7b00038 CrossRefGoogle Scholar
  73. Léger JM, Haines J, Schmidt M, Petitet JP, Pereira A, da Jornada JAH (1996) Discovery of hardest known oxide. Nature 383:401.  https://doi.org/10.1038/383401a0 CrossRefGoogle Scholar
  74. Li Puma G, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157(2):209–219.  https://doi.org/10.1016/j.jhazmat.2008.01.040 CrossRefGoogle Scholar
  75. Li X, Xiong Y, Li Z, Xie Y (2006) Large-scale fabrication of TiO2 hierarchical hollow spheres. Inorg Chem 45(9):3493–3495.  https://doi.org/10.1021/ic0602502 CrossRefGoogle Scholar
  76. Li F, Sun S, Jiang Y, Xia M, Sun M, Xue B (2008) Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral. J Hazard Mater 152(3):1037–1044.  https://doi.org/10.1016/j.jhazmat.2007.07.114 CrossRefGoogle Scholar
  77. Li XH, Wang X, Antonietti M (2012) Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem Sci 3(6):2170–2174.  https://doi.org/10.1039/C2SC20289A CrossRefGoogle Scholar
  78. Li W, Wu Z, Wang J, Elzatahry AA, Zhao D (2013) A perspective on mesoporous TiO2 materials. Chem Mater 26(1):287–298.  https://doi.org/10.1021/cm4014859 CrossRefGoogle Scholar
  79. Li ZJ, Fan XB, Li XB, Li JX, Ye C, Wang JJ, Yu S, Li CB, Gao YJ, Meng QY, Tung CH, Wu LZ (2014) Visible light catalysis-assisted assembly of Nih-QD hollow nanospheres in situ via hydrogen bubbles. J Am Chem Soc 136(23):8261–8268.  https://doi.org/10.1021/ja5047236 CrossRefGoogle Scholar
  80. Li D, Zhu Q, Han C, Yang Y, Jiang W, Zhang Z (2015a) Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads. J Hazard Mater 285:398–408.  https://doi.org/10.1016/j.jhazmat.2014.12.024 CrossRefGoogle Scholar
  81. Li J, Chen Y, Wang Y, Yan Z, Duan D, Wang J (2015b) Synthesis and photocatalysis of mesoporous titania templated by natural rubber latex. RSC Adv 5(28):21480–21486.  https://doi.org/10.1039/C4RA15566A CrossRefGoogle Scholar
  82. Li X, Masters AF, Maschmeyer T (2015c) Photocatalytic hydrogen evolution from silica-templated polymeric graphitic carbon nitride—is the surface area important? ChemCatChem 7(1):121–126.  https://doi.org/10.1002/cctc.201402567 CrossRefGoogle Scholar
  83. Li ZD, Wang HL, Wei XN, Liu XY, Yang YF, Jiang WF (2016) Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core–shell microspheres supported by silica aerogels from industrial fly ash. J Alloys Compd 659:240–247.  https://doi.org/10.1016/j.jallcom.2015.10.297 CrossRefGoogle Scholar
  84. Liu Y, Goebl J, Yin Y (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610–2653.  https://doi.org/10.1039/C2CS35369E CrossRefGoogle Scholar
  85. Liu J, Huang J, Zhou H, Antonietti M (2014a) Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl Mater Interfaces 6(11):8434–8440.  https://doi.org/10.1021/am501319v CrossRefGoogle Scholar
  86. Liu J, Jin J, Li Y, Huang HW, Wang C, Wu M, Chen LH, Su BL (2014b) Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. J Mater Chem A 2(14):5051–5059.  https://doi.org/10.1039/C3TA15044E CrossRefGoogle Scholar
  87. Liu H, Gong H, Zou M, Jiang H, Abolaji RS, Tareen AK, Yang M (2017) Mo-N-co-doped mesoporous TiO2 microspheres with enhanced visible light photocatalytic activity. Mater Res Bull 96:10–17.  https://doi.org/10.1016/j.materresbull.2016.12.041 CrossRefGoogle Scholar
  88. Lou XW, Archer LA, Yang Z (2008) Hollow micro−−/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019.  https://doi.org/10.1002/adma.200800854 CrossRefGoogle Scholar
  89. Luo SN, Swadener JG, Ma C, Tschauner O (2007) Examining crystallographic orientation dependence of hardness of silica stishovite. Phys B Condens Matter 399(2):138–142.  https://doi.org/10.1016/j.physb.2007.06.011 CrossRefGoogle Scholar
  90. Mahalakshmi M, Vishnu Priya S, Arabindoo B, Palanichamy M, Murugesan V (2009) Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2. J Hazard Mater 161(1):336–343.  https://doi.org/10.1016/j.jhazmat.2008.03.098 CrossRefGoogle Scholar
  91. Mahmoodi NM, Abdia J, Oveisia M, Asli MA, Vossoughi M (2018) Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Mater Res Bull 100:357–366.  https://doi.org/10.1016/j.materresbull.2017.12.033 CrossRefGoogle Scholar
  92. Meng S, Li D, Wang P, Zheng X, Wang J, Chen J, Fang J, Fu X (2013) Probing photonic effect on photocatalytic degradation of dyes based on 3D inverse opal ZnO photonic crystal. RSC Adv 3(38):17021–17028.  https://doi.org/10.1039/C3RA42618A CrossRefGoogle Scholar
  93. Mishra A, Fischer MK, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499.  https://doi.org/10.1002/anie.200804709 CrossRefGoogle Scholar
  94. Mohamed HH, Bahnemann DW (2012) The role of electron transfer in photocatalysis: fact and fictions. Appl Catal B Environ 128:91–104.  https://doi.org/10.1016/j.apcatb.2012.05.045 CrossRefGoogle Scholar
  95. Mohamed RM, Ismail AA, Othman I, Ibrahim IA (2005) Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA. J Mol Catal A Chem 238(1):151–157.  https://doi.org/10.1016/j.molcata.2005.05.023 CrossRefGoogle Scholar
  96. Mondal K, Sharma IA (2014) Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review. In: Misra A, Bellare JB (eds) Nanoscience & technology for mankind. The National Academy of Sciences India, New Delhi, pp 36–72Google Scholar
  97. More PM, Umbarkar SB, Dongare MK (2016) Template-free sol–gel synthesis of high surface area mesoporous silica based catalysts for esterification of di-carboxylic acids. C R Chim 19(10):1247–1253.  https://doi.org/10.1016/j.crci.2016.02.001 CrossRefGoogle Scholar
  98. Moussaoui Y, Kachbouri S, Elaloui E (2018) The effect of surfactant chain length and type on the photocatalytic activity of mesoporous TiO2 nanoparticles obtained via modified sol-gel process. Iran J Chem Chem Eng, avalaible online at http://www.ijcce.ac.ir/article_29528_0.html. Accessed Aug 2018 In press)
  99. Nada MH, Larsen SC (2017) Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous Mesoporous Mater 239:444–452.  https://doi.org/10.1016/j.micromeso.2016.10.040 CrossRefGoogle Scholar
  100. Nipane SV, Korake PV, Gokavi GS (2015) Graphene-zinc oxide nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation. Ceram Int 41(3 Part B):4549–4557.  https://doi.org/10.1016/j.ceramint.2014.11.151 CrossRefGoogle Scholar
  101. Pal A, Jana TK, Chatterjee K (2016) Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation. Mater Res Bull 76:353–357.  https://doi.org/10.1016/j.materresbull.2015.12.040 CrossRefGoogle Scholar
  102. Pang D, Qiu L, Zhu R, Ouyang F (2015) Silica supported SO42-/TiO2 for photocatalytic decomposition of acrylonitrile under simulant solar light irradiation. Chem Eng J 270:590–596.  https://doi.org/10.1016/j.cej.2015.02.055 CrossRefGoogle Scholar
  103. Peer M, Luardi M, Jensen KF (2017) A facile soft-templated synthesis of high surface area and highly porous carbon nitrides. Chem Mater 29(4):1496–1506.  https://doi.org/10.1021/acs.chemmater.6b03570 CrossRefGoogle Scholar
  104. Peng Q, Dong Y, Li Y (2003) ZnSe semiconductor hollow microspheres. Angew Chem Int Ed 42(26):3027–3030.  https://doi.org/10.1002/anie.200250695 CrossRefGoogle Scholar
  105. Polshettiwar V, Cha D, Zhang X, Basset JM (2010) High-surface-area silica Nanospheres (KCC-1) with a fibrous morphology. Angew Chem Int Ed 49(50):9652–9656.  https://doi.org/10.1002/anie.201003451 CrossRefGoogle Scholar
  106. Pradhan GK, Reddy KH, Parida KM (2014) Facile fabrication of mesoporous α-Fe2O3/SnO2 nanoheterostructure for photocatalytic degradation of malachite green. Catal Today 224:171–179.  https://doi.org/10.1016/j.cattod.2013.10.038 CrossRefGoogle Scholar
  107. Raizada P, Singh P, Kumar A, Sharma G, Pare B, Jonnalagadda SB, Thakur P (2014) Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation. Appl Catal A Gen 486:159–169.  https://doi.org/10.1016/j.apcata.2014.08.043 CrossRefGoogle Scholar
  108. Raza W, Haque MM, Muneer M, Fleisch M, Hakki A, Bahnemann D (2015) Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO2 hybrid carbon spheres. J Alloys Compd 632:837–844.  https://doi.org/10.1016/j.jallcom.2015.01.222 CrossRefGoogle Scholar
  109. Reháková M, Čuvanová S, Dzivák M, Rimár J, Gaval’ová Z (2004) Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr Opin Solid State Mater Sci 8(6):397–404.  https://doi.org/10.1016/j.cossms.2005.04.004 CrossRefGoogle Scholar
  110. Ren X, Ying P, Yang Z, Shang M, Hou H, Gao F (2015) Foaming-assisted electrospinning of large-pore mesoporous ZnO nanofibers with tailored structures and enhanced photocatalytic activity. RSC Adv 5(21):16361–16367.  https://doi.org/10.1039/C4RA15421E CrossRefGoogle Scholar
  111. Ren X, Hou H, Liu Z, Gao F, Zeng J, Wang L, Li W, Ying P, Yang W, Wu T (2016) Shape-enhanced photocatalytic activities of thoroughly mesoporous zno nanofibers. Small 12(29):4007–4017.  https://doi.org/10.1002/smll.201600991 CrossRefGoogle Scholar
  112. Reyes MK, Dashdorj U, Amarjargal A, Park CH, Kim CS (2015) Simple and rapid synthesis of mesoporous nanosheet-based ZnO hierarchical structure loaded with metal nanoparticles. Ceram Int 41(2, Part A):2022–2027.  https://doi.org/10.1016/j.ceramint.2014.09.126 CrossRefGoogle Scholar
  113. Saravanan R, Manoj D, Qin J, Naushad M, Gracia F, Lee AF, Khan MM, Gracia-Pinilla MA (2018) Mechanothermal synthesis of ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Saf Environ Prot 120:339–347.  https://doi.org/10.1016/j.psep.2018.09.015 CrossRefGoogle Scholar
  114. Setthaya N, Chindaprasirt P, Yin S, Pimraksa K (2017) TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol 313:417–426.  https://doi.org/10.1016/j.powtec.2017.01.014 CrossRefGoogle Scholar
  115. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389(1):1–8.  https://doi.org/10.1016/j.apcata.2010.08.053 CrossRefGoogle Scholar
  116. Sharma G, Bhogal S, Naushad M et al (2017) Microwave assisted fabrication of La/cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J Photochem Photobiol A Chem 347:235–243.  https://doi.org/10.1016/j.jphotochem.2017.07.001 CrossRefGoogle Scholar
  117. Silva TL, Cazetta AL, Souza PSC, Zhang T, Asefa T, Almeida VC (2018) Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions. J Clean Prod 171:482–490.  https://doi.org/10.1016/j.jclepro.2017.10.034 CrossRefGoogle Scholar
  118. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A Gen 462–463:178–195.  https://doi.org/10.1016/j.apcata.2013.04.039 CrossRefGoogle Scholar
  119. Smått JH, Schunk S, Lindén M (2003) Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem Mater 15(12):2354–2361.  https://doi.org/10.1021/cm0213422 CrossRefGoogle Scholar
  120. Smith DK (2013) Opal, cristobalite, and tridymite: noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography. Powder Diffract 13(1):2–19.  https://doi.org/10.1017/S0885715600009696 CrossRefGoogle Scholar
  121. Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath KP, Sankaranarayanan AR (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78.  https://doi.org/10.1016/j.jenvman.2017.05.063 CrossRefGoogle Scholar
  122. Srinivasan P, Subramanian B, Djaoued Y, Robichaud J, Sharma T, Bruning R (2015) Facile synthesis of mesoporous nanocrystalline ZnO bipyramids and spheres: characterization, and photocatalytic activity. Mater Chem Phys 155:162–170.  https://doi.org/10.1016/j.matchemphys.2015.02.018 CrossRefGoogle Scholar
  123. Sun J, Chen G, Wu J, Dong H, Xiong G (2013a) Bismuth vanadate hollow spheres: bubble template synthesis and enhanced photocatalytic properties for photodegradation. Appl Catal B 132–133:304–314.  https://doi.org/10.1016/j.apcatb.2012.12.002 CrossRefGoogle Scholar
  124. Sun Z, Bai C, Zheng S, Yang X, Frost RL (2013b) A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Appl Catal A Gen 458:103–110.  https://doi.org/10.1016/j.apcata.2013.03.035 CrossRefGoogle Scholar
  125. Taguchi A, Smått JH, Lindén M (2003) Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv Mater 15(14):1209–1211.  https://doi.org/10.1002/adma.200304848 CrossRefGoogle Scholar
  126. Tang X, Feng Q, Liu K, Luo X, Huang J, Li Z (2018) A simple and innovative route to remarkably enhance the photocatalytic performance of TiO2: using micro-meso porous silica nanofibers as carrier to support highly-dispersed TiO2 nanoparticles. Microporous Mesoporous Mater 258:251–261.  https://doi.org/10.1016/j.micromeso.2017.09.024 CrossRefGoogle Scholar
  127. Tripathy N, Ahmad R, Kuk H, Hahn Y-B, Khang G (2016) Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. Ceram Int 42(8):9519–9526.  https://doi.org/10.1016/j.ceramint.2016.03.030 CrossRefGoogle Scholar
  128. Veselý M, Zita J, Veselá M, Chovancová J, Chomoucká J, Možíšká P (2005) 6. Physical & applied chemistry 6.1. lectures. Chem List 99:s49–s652Google Scholar
  129. Wakimoto R, Kitamura T, Ito F, Usami H, Moriwaki H (2015) Decomposition of methyl orange using C60 fullerene adsorbed on silica gel as a photocatalyst via visible-light induced electron transfer. Appl Catal B Environ 166–167:544–550.  https://doi.org/10.1016/j.apcatb.2014.12.010 CrossRefGoogle Scholar
  130. Wang L, Kong A, Chen B, Ding H, Shan Y, He M (2005) Direct synthesis, characterization of cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. J Mol Catal A Chem 230(1):143–150.  https://doi.org/10.1016/j.molcata.2004.12.027 CrossRefGoogle Scholar
  131. Wang QQ, Lin BZ, Xu BH, Li XL, Chen ZJ, Pian XT (2010a) Preparation and photocatalytic properties of mesoporous SnO2–hexaniobate layered nanocomposite. Microporous Mesoporous Mater 130(1):344–351.  https://doi.org/10.1016/j.micromeso.2009.11.033 CrossRefGoogle Scholar
  132. Wang Y, Wang X, Antonietti M, Zhang Y (2010b) Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. ChemSusChem 3(4):435–439.  https://doi.org/10.1002/cssc.200900284 CrossRefGoogle Scholar
  133. Wang C, Shi H, Li Y (2011) Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Appl Surf Sci 257(15):6873–6877.  https://doi.org/10.1016/j.apsusc.2011.03.021 CrossRefGoogle Scholar
  134. Wang B, Zhang L, Li B, Li Y, Shi Y, Shi T (2014a) Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous silica SBA-15 and MCM-41 with a Pt(II)–porphyrin complex. Sensors Actuators B Chem 190:93–100.  https://doi.org/10.1016/j.snb.2013.08.036 CrossRefGoogle Scholar
  135. Wang Y, Zhu S, Chen X, Tang Y, Jiang Y, Peng Z, Wang H (2014b) One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity. Appl Surf Sci 307:263–271.  https://doi.org/10.1016/j.apsusc.2014.04.023 CrossRefGoogle Scholar
  136. Wang J, Li X, Xia Y, Komarneni S, Chen H, Xu J, Xiang L, Xie D (2016a) Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO2 sensor. ACS Appl Mater Interfaces 8(13):8600–8607.  https://doi.org/10.1021/acsami.5b12553 CrossRefGoogle Scholar
  137. Wang X, Huang L, Zhao Y, Zhang Y, Zhou G (2016b) Synthesis of mesoporous ZnO nanosheets via facile solvothermal method as the anode materials for lithium-ion batteries. Nanoscale Res Lett 11(1):37–37.  https://doi.org/10.1186/s11671-016-1244-9 CrossRefGoogle Scholar
  138. Wei JQ, Chen XJ, Wang PF, Han YB, Xu JC, Hong B, Wang XQ (2018) High surface area TiO2/SBA-15 nanocomposites: synthesis, microstructure and adsorption-enhanced photocatalysis. Chem Phys 510:47–53.  https://doi.org/10.1016/j.chemphys.2018.05.012 CrossRefGoogle Scholar
  139. Wellia DW (2012) Green preparation of visible light active titanium dioxide films, thesisGoogle Scholar
  140. Wu M, Liu J, Jin J, Wang C, Huang S, Deng Z, Li Y, Su BL (2013a) Probing significant light absorption enhancement of titania inverse opal films for highly exalted photocatalytic degradation of dye pollutants. Appl Catal B Environ 150–151:411–420.  https://doi.org/10.1016/j.apcatb.2013.12.037 CrossRefGoogle Scholar
  141. Wu SH, Mou CY, Lin HP (2013b) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875.  https://doi.org/10.1039/C3CS35405A CrossRefGoogle Scholar
  142. Xia Y, Wang J, Chen R, Zhou D, Xiang L (2016) A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application. Crystals 6(11):148.  https://doi.org/10.3390/cryst6110148 CrossRefGoogle Scholar
  143. Xiao S, Li H, Liu L, Lian J (2015) Glucose-assisted generation of assembled mesoporous ZnO sheets with highly efficient photocatalytic performance. Mater Sci Semicond Process 39:680–685.  https://doi.org/10.1016/j.mssp.2015.05.051 CrossRefGoogle Scholar
  144. Xiao L, Youji L, Feitai C, Peng X, Ming L (2017) Facile synthesis of mesoporous titanium dioxide doped by ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation. RSC Adv 7(41):25314–25324.  https://doi.org/10.1039/C7RA02198D CrossRefGoogle Scholar
  145. Xiao H, Zhang W, Wei Y, Chen L (2018) Carbon/ZnO nanorods composites template by TEMPO-oxidized cellulose and photocatalytic activity for dye degradation. Cellulose 25(3):1809–1819.  https://doi.org/10.1007/s10570-018-1651-4 CrossRefGoogle Scholar
  146. Xin L, Liu X (2015) Black TiO2 inverse opals for visible-light photocatalysis. RSC Adv 5(88):71547–71550.  https://doi.org/10.1039/C5RA10280D CrossRefGoogle Scholar
  147. Xu J, Yang B, Wu M, Fu Z, Lv Y, Zhao Y (2010) Novel N-F-codoped TiO2 inverse opal with a hierarchical meso−−/macroporous structure: synthesis, characterization, and photocatalysis. J Phys Chem C 114(36):15251–15259.  https://doi.org/10.1021/jp101168y CrossRefGoogle Scholar
  148. Xu QC, Wellia DV, Yan S, Liao DW, Lim TM, Tan TTY (2011) Enhanced photocatalytic activity of C–N-codoped TiO2 films prepared via an organic-free approach. J Hazard Mater 188(1):172–180.  https://doi.org/10.1016/j.jhazmat.2011.01.088 CrossRefGoogle Scholar
  149. Yamazoe N, Miua N (1992) Some basic aspects of semiconductor gas sensors. In: Yamauchi S (ed) Chemical sensor technology. Elsevier, Amsterdam, pp 19–42.  https://doi.org/10.1016/C2009-0-13117-3 CrossRefGoogle Scholar
  150. Yan H (2012) Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem Commun 48(28):3430–3432.  https://doi.org/10.1039/C2CC00001F CrossRefGoogle Scholar
  151. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46(2):481–558.  https://doi.org/10.1039/C6CS00829A CrossRefGoogle Scholar
  152. Ye A, Fan W, Zhang Q, Deng W, Wang Y (2012) CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal Sci Technol 2(5):969–978.  https://doi.org/10.1039/C2CY20027A CrossRefGoogle Scholar
  153. Yin M, Liu S (2015) Controlled ZnO hierarchical structure for improved gas sensing performance. Sensors Actuators B Chem 209:343–351.  https://doi.org/10.1016/j.snb.2014.11.129 CrossRefGoogle Scholar
  154. Yu J, Yu JC, Hoa W, Jiang Z (2002) Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New J Chem 26(5):607–613.  https://doi.org/10.1039/b200964a CrossRefGoogle Scholar
  155. Zhang K, Ostraat ML (2016) Innovations in hierarchical zeolite synthesis. Catal Today 264:3–15.  https://doi.org/10.1016/j.cattod.2015.08.012 CrossRefGoogle Scholar
  156. Zhang L, Baumanis C, Robben L, Kandiel T, Bahnemann D (2011) Bi2WO6 inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. Small 7(19):2714–2720.  https://doi.org/10.1002/smll.201101152 CrossRefGoogle Scholar
  157. Zhang J, Zhang M, Yang C, Wang X (2014) Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv Mater 26(24):4121–4126.  https://doi.org/10.1002/adma.201400573 CrossRefGoogle Scholar
  158. Zhang JJ, Liu X, Ye T, Zheng GP, Zheng XC, Liu P, Guan XX (2017) Novel assembly of homogeneous reduced graphene oxide-doped mesoporous TiO2 hybrids for elimination of Rhodamine-B dye under visible light irradiation. J Alloys Compd 698:819–827.  https://doi.org/10.1016/j.jallcom.2016.12.279 CrossRefGoogle Scholar
  159. Zhou C, Zhao Y, Bian T, Shang L, Yu H, Wu LZ, Tung CH, Zhang T (2013) Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem Commun 49(84):9872–9874.  https://doi.org/10.1039/C3CC45683H CrossRefGoogle Scholar
  160. Znad H, Khalid A, Hena S, Auwal MR (2018) Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng 6(1):218–227.  https://doi.org/10.1016/j.jece.2017.11.077 CrossRefGoogle Scholar
  161. Zu G, Shen J, Wang W, Zou L, Lian Y, Zhang Z (2015) Silica–titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. ACS Appl Mater Interfaces 7(9):5400–5409.  https://doi.org/10.1021/am5089132 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Diana V. Wellia
    • 1
  • Yuly Kusumawati
    • 2
  • Lina J. Diguna
    • 3
  • Nurul Pratiwi
    • 1
  • Reza A. Putri
    • 1
  • Muhamad I. Amal
    • 4
    Email author
  1. 1.Chemistry DepartmentAndalas UniversityPadangIndonesia
  2. 2.Chemistry DepartmentSepuluh Nopember Institute of TechnologySurabayaIndonesia
  3. 3.Department of Renewable Energy EngineeringPrasetiya Mulya UniversityTangerangIndonesia
  4. 4.Research Center Metallurgy and MaterialsIndonesian Institute of SciencesTangerang SelatanIndonesia

Personalised recommendations