Advertisement

Visible-Light-Responsive Nanostructured Materials for Photocatalytic Degradation of Persistent Organic Pollutants in Water

  • Hugues Kamdem Paumo
  • Raghunath Das
  • Madhumita Bhaumik
  • Arjun MaityEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 35)

Abstract

Persistent organic pollutants (POPs) such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons consist of a group of synthetic compounds that are characterized by their resistance to degradation, important long-range transportation, and harmful effects to the ecosystems and human well-being. Certainly, we cannot think about progress in human civilization without industrialization. However, the rapid evolution in chemical, agrochemical, and petrochemical industries and the population exponential growth in the last century have given rise to an important number of toxic, bioaccumulative, and persistent organic chemicals in the environment. Effective removal of persistent organic pollutants (POPs) from wastewater represents one key approach that could limit their potential environmental impacts. Among a variety of techniques reported for the treatment of organic compound-contaminated wastewater, heterogeneous photocatalytic method using visible-light-responsive semiconductors has been articulated as an efficient technology that holds good potential for the removal of POPs. This chapter gives an overview of the latest development in the design and synthesis of unique semiconductors with visible-light-driven catalytic degradation of POPs. Contextual information on the basic principles of heterogeneous photocatalysis, paths of visible-light response, and photocatalytic performance of innovative semiconductor materials are presented.

Keywords

Persistent organic pollutants Heterogeneous photocatalysis Visible-light response 

Abbreviations

POPs

Persistent organic pollutants

BPA

Bisphenol A

DDT

Dichlorodiphenyl trichloroethane

PFOA

Perfluorooctanoic acid

HCB

Hexachlorobenzene

PFOS

Perfluorooctane sulfonate

PCBs

Polychlorinated biphenyls

TNF-α

Tumor necrosis factor α

PCDFs

Polychlorinated dibenzofurans

HepG2

Human hepatoblastoma cell line

PCDDs

Polychlorinated dibenzodioxins

AOPs

Advanced oxidation processes

PBBs

Polybrominated biphenyls

CB

Conduction band

PFOS

Perfluorooctane sulfonate

VB

Valence band

PFOSF

Perfluorooctane sulfonyl fluoride

TTIP

Titanium tetraisopropoxide

BDE209

Decabromodiphenyl ether

GO

Graphene oxide

PAHs

Polycyclic aromatic hydrocarbons

UV

Ultraviolet

References

  1. Ahmad R, Ahmad Z, Khan AU, Mastoi NR, Aslam M, Kim J (2016) Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications. J Environ Chem Eng 4(4):4143–4164.  https://doi.org/10.1016/j.jece.2016.09.009 CrossRefGoogle Scholar
  2. Al-Kahtani AA, Alshehri SM, Naushad M, Ruksana TA (2019) Fabrication of highly porous N/S doped carbon embedded with ZnS as highly efficient photocatalyst for degradation of bisphenol. Int J Biol Macromol 121:415–423.  https://doi.org/10.1016/j.ijbiomac.2018.09.199 CrossRefGoogle Scholar
  3. Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie JC (2009) Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog Energy Combust Sci 35(3):245–274.  https://doi.org/10.1016/j.pecs.2008.12.001 CrossRefGoogle Scholar
  4. Bak T, Nowotny J, Nowotny MK (2006) Defect disorder of titanium dioxide. J Phys Chem B 110(43):21560–21567.  https://doi.org/10.1021/jp063700k CrossRefGoogle Scholar
  5. Benson K, Yang E, Dutton N, Sjodin A, Rosenbaum PF, Pavuk M (2018) Polychlorinated biphenyls, indicators of thyroid function and thyroid autoantibodies in the Anniston Community Health Survey I (ACHS-I). Chemosphere 195:156–165.  https://doi.org/10.1016/j.chemosphere.2017.12.050 CrossRefGoogle Scholar
  6. Canle M, Pérez MI, Santaballa JA (2017) Photocatalyzed degradation/abatement of endocrine disruptors. Curr Opin Green Sustain Chem 6:101–138.  https://doi.org/10.1016/j.cogsc.2017.06.008 CrossRefGoogle Scholar
  7. Carlsson P, Crosse JD, Halsall C, Evenset A, Heimstad ES, Harju M (2016) Perfluoroalkylated substances (PFASs) and legacy persistent organic pollutants (POPs) in halibut and shrimp from coastal areas in the far north of Norway: small survey of important dietary foodstuffs for coastal communities. Marine Poll Bull 105(1):81–87.  https://doi.org/10.1016/j.marpolbul.2016.02.053 CrossRefGoogle Scholar
  8. Cates EL (2017) Photocatalytic water treatment: so where are we going with this? Environ Sci Technol 51:757–758.  https://doi.org/10.1021/acs.est.6b06035 CrossRefGoogle Scholar
  9. Cen W, Xiong T, Tang C, Yuan S, Dong F (2014) Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures. Ind Eng Chem Res 53(39):15002–15011.  https://doi.org/10.1021/ie502670n CrossRefGoogle Scholar
  10. Chen CJ, Liao CH, Hsu KC, Wu YT, Wu JC (2011) P–N junction mechanism on improved NiO/TiO2 photocatalyst. Catal Commun 12(14):1307–1310.  https://doi.org/10.1016/j.catcom.2011.05.009 CrossRefGoogle Scholar
  11. Corsini E, Avogadro A, Galbiati V, Dell’Agli M, Marinovich M, Galli CL, Germolec DR (2011) In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs). Toxicol Appl Pharmacol 250(2):108–116.  https://doi.org/10.1016/j.taap.2010.11.004 CrossRefGoogle Scholar
  12. Costa LG, Pellacani C, Dao K, Kavanagh TJ, Roque PJ (2015) The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice. Neurotoxicology 48:68–76.  https://doi.org/10.1016/j.neuro.2015.03.008 CrossRefGoogle Scholar
  13. De Joode BV, Wesseling C, Kromhout H, Monge P, Garcia M, Mergler D (2001) Chronic nervous-system effects of long-term occupational exposure to DDT. Lancet 357(9261):1014–1016.  https://doi.org/10.1016/S0140-6736(00)04249-5 CrossRefGoogle Scholar
  14. Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, Sun J (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5(19):14610–14630.  https://doi.org/10.1039/c4ra13734e CrossRefGoogle Scholar
  15. Doong RA, Liao CY (2017a) Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method. J Hazard Mater 322:254–262.  https://doi.org/10.1016/j.jhazmat.2016.02.065 CrossRefGoogle Scholar
  16. Doong RA, Liao CY (2017b) Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations. Sep Purif Technol 179:403–411.  https://doi.org/10.1016/j.seppur.2017.02.028 CrossRefGoogle Scholar
  17. Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B 28(2):83–99.  https://doi.org/10.1016/S0926-3373(00)00168-5 CrossRefGoogle Scholar
  18. Erickson MD, Kaley RG (2011) Applications of polychlorinated biphenyls. Environ Sci Pollut Res 18(2):135–151.  https://doi.org/10.1007/s11356-010-0392-1 CrossRefGoogle Scholar
  19. Fang WQ, Wang XL, Zhang H, Jia Y, Huo Z, Li Z, Zhao H, Yang HG, Yao X (2014) Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping. J Mater Chem A 2(10):3513–3520.  https://doi.org/10.1039/c3ta13917d CrossRefGoogle Scholar
  20. Feng W, Huang T, Gao L, Yang X, Deng W, Zhou R, Liu H (2018) Textile-supported silver nanoparticles as a highly efficient and recyclable heterogeneous catalyst for nitroaromatic reduction at room temperature. RSC Adv 8(12):6288–6292.  https://doi.org/10.1039/c7ra13257c CrossRefGoogle Scholar
  21. Fu J, Sheng S, Wen T, Zhang ZM, Wang Q, Hu QX, Li QS, An SQ, Zhu HL (2011) Polycyclic aromatic hydrocarbons in surface sediments of the Jialu River. Ecotoxicology 20(5):940–950.  https://doi.org/10.1007/s10646-011-0622-4 CrossRefGoogle Scholar
  22. Fu J, Kyzas GZ, Cai Z, Deliyanni EA, Liu W, Zhao D (2018) Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: effects of water quality parameters and predictive modeling. Chem Eng J 335:290–300.  https://doi.org/10.1016/j.cej.2017.10.163 CrossRefGoogle Scholar
  23. Gao X, Zhang R, Shang Y, Fei J, Fu F (2018) Synergism of 3D g-C3N4 decorated Bi2WO6 microspheres with efficient visible light catalytic activity. J Phys Chem Solids 119:19–28.  https://doi.org/10.1016/j.jpcs.2018.03.032 CrossRefGoogle Scholar
  24. Gardoni D, Vailati A, Canziani R (2012) Decay of ozone in water: a review. Ozone Sci Eng 34(4):233–242.  https://doi.org/10.1080/01919512.2012.686354 CrossRefGoogle Scholar
  25. Gaum PM, Esser A, Schettgen T, Gube M, Kraus T, Lang J (2014) Prevalence and incidence rates of mental syndromes after occupational exposure to polychlorinated biphenyls. Int J Hyg Environ Health 217(7):765–774.  https://doi.org/10.1016/j.ijheh.2014.04.001 CrossRefGoogle Scholar
  26. Gaum PM, Gube M, Schettgen T, Putschögl FM, Kraus T, Fimm B, Lang J (2017) Polychlorinated biphenyls and depression: cross-sectional and longitudinal investigation of a dopamine-related Neurochemical path in the German HELPcB surveillance program. Environ Health 16(1):106.  https://doi.org/10.1186/s12940-017-0316-3 CrossRefGoogle Scholar
  27. Gaur N, Narasimhulu K, Pydisetty Y (2018) Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod 198:1602–1631.  https://doi.org/10.1016/j.jclepro.2018.07.076 CrossRefGoogle Scholar
  28. Gaw S, Thomas KV, Hutchinson TH (2014) Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philos Trans R Soc Lond Ser B Biol Sci 369(1656):20130572.  https://doi.org/10.1098/rstb.2013.0572 CrossRefGoogle Scholar
  29. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Gupta VK (2016) Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J Mol Liq 223:652–659.  https://doi.org/10.1016/j.molliq.2016.08.105 CrossRefGoogle Scholar
  30. Haffner D, Schecter A (2014) Persistent organic pollutants (POPs): a primer for practicing clinicians. Curr Environ Health Rep 1(2):123–131.  https://doi.org/10.1007/s40572-014-0009-9 CrossRefGoogle Scholar
  31. Han Z, Li Y, Zhang S, Song N, Xu H, Dang Y, Liu C, Giesy JP, Yu H (2017) Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring. Aquat Toxicol 190:46–52.  https://doi.org/10.1016/j.aquatox.2017.06.020 CrossRefGoogle Scholar
  32. Hao X, Li M, Zhang L, Wang K, Liu C (2017) Photocatalyst TiO2/WO3/GO nano-composite with high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination. J Ind Eng Chem 55:140–148.  https://doi.org/10.1016/j.jiec.2017.06.038 CrossRefGoogle Scholar
  33. He X, Aker WG, Pelaez M, Lin Y, Dionysiou DD, Hwang HM (2016) Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: implication for field remediation. J Photochem Photobiol A 314:81–92.  https://doi.org/10.1016/j.jphotochem.2015.08.014 CrossRefGoogle Scholar
  34. Hlekelele L, Franklyn PJ, Dziike F, Durbach SH (2018) Novel synthesis of Ag decorated TiO2 anchored on zeolites derived from coal fly ash for the photodegradation of bisphenol-A. New J Chem 42(3):1902–1912.  https://doi.org/10.1039/c7nj02885g CrossRefGoogle Scholar
  35. Im J, Löffler FE (2016) Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol 50(16):8403–8416.  https://doi.org/10.1021/acs.est.6b00877 CrossRefGoogle Scholar
  36. Jaihindh DP, Chen CC, Fu YP (2018) Reduced graphene oxide-supported Ag-loaded Fe-doped TiO2 for the degradation mechanism of methylene blue and its electrochemical properties. RSC Adv 8(12):6488–6501.  https://doi.org/10.1039/c7ra13418e CrossRefGoogle Scholar
  37. Ji SS, Ren Y, Buekens A, Chen T, Lu SY, Cen KF, Li XD (2014) Treating PCDD/Fs by combined catalysis and activated carbon adsorption. Chemosphere 102:31–36.  https://doi.org/10.1016/j.chemosphere.2013.12.008 CrossRefGoogle Scholar
  38. Jonjana S, Phuruangrat A, Thongtem T, Kuntalue B, Thongtem S (2018) Decolorization of rhodamine B photocatalyzed by Ag3PO4/Bi2WO6 nanocomposites under visible radiation. Mater Lett 218:146–149.  https://doi.org/10.1016/j.matlet.2018.01.176 CrossRefGoogle Scholar
  39. Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y (2012) Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy Environ Sci 5(4):6321–6327.  https://doi.org/10.1039/c1ee02533c CrossRefGoogle Scholar
  40. Kallenborn R, Christensen G, Evenset A, Schlabach M, Stohl A (2007) Atmospheric transport of persistent organic pollutants (POPs) to Bjørnøya (Bear island). J Environ Monit 9(10):1082–1091.  https://doi.org/10.1039/b707757m CrossRefGoogle Scholar
  41. Khan H, Swati IK (2016) Fe3+−doped anatase TiO2 with d–d transition, oxygen vacancies and Ti3+ centers: synthesis, characterization, UV–vis photocatalytic and mechanistic studies. Ind Eng Chem Res 55(23):6619–6633.  https://doi.org/10.1021/acs.iecr.6b01104 CrossRefGoogle Scholar
  42. Klečka GM, Staples CA, Clark KE, van der Hoeven N, Thomas DE, Hentges SG (2009) Exposure analysis of bisphenol A in surface water systems in North America and Europe. Environ Sci Technol 43(16):6145–6150.  https://doi.org/10.1021/es900598e CrossRefGoogle Scholar
  43. Kumar A, Naushad M, Rana A et al (2017) ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis. Int J Biol Macromol 104:1172–1184.  https://doi.org/10.1016/j.ijbiomac.2017.06.116 CrossRefGoogle Scholar
  44. Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N (2005) Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem Phys Lett 401(4–6):579–584.  https://doi.org/10.1016/j.cplett.2004.11.126 CrossRefGoogle Scholar
  45. Li K, Xiong J, Chen T, Yan L, Dai Y, Song D, Lv Y, Zeng Z (2013) Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation. J Hazard Mater 250:19–28.  https://doi.org/10.1016/j.jhazmat.2013.01.069 CrossRefGoogle Scholar
  46. Li X, Lin H, Chen X, Niu H, Zhang T, Liu J, Qu F (2015a) Fabrication of TiO2/porous carbon nanofibers with superior visible photocatalytic activity. New J Chem 39(10):7863–7872.  https://doi.org/10.1039/c5nj01189b CrossRefGoogle Scholar
  47. Li Y, Wang K, Wu J, Gu L, Lu Z, Wang X, Cao X (2015b) Synthesis of highly permeable Fe2O3/ZnO hollow spheres for printable photocatalysis. RSC Adv 5(107):88277–88286.  https://doi.org/10.1039/c5ra17765k CrossRefGoogle Scholar
  48. Liang D, Cui C, Hu H, Wang Y, Xu S, Ying B, Li P, Lu B, Shen H (2014) One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J Alloys Compd 582:236–240.  https://doi.org/10.1016/j.jallcom.2013.08.062 CrossRefGoogle Scholar
  49. Litter M, Quici N (2010) Photochemical advanced oxidation processes for water and wastewater treatment. Rec Patents Eng 4:217–241.  https://doi.org/10.2174/187221210794578574 CrossRefGoogle Scholar
  50. Liu Z, Lu X (2018) Multifarious function layers photoanode based on g-C3N4 for photoelectrochemical water splitting. Chin J Catal 39(9):1527–1533.  https://doi.org/10.1016/S1872-2067(18)63079-7 CrossRefGoogle Scholar
  51. Liu S, Zhao H, Lehmler HJ, Cai X, Chen J (2017a) Antibiotic pollution in marine food webs in Laizhou Bay, North China: trophodynamics and human exposure implication. Environ Sci Technol 51(4):2392–2400.  https://doi.org/10.1021/acs.est.6b04556 CrossRefGoogle Scholar
  52. Liu C, Dong X, Hao Y, Wang X, Ma H, Zhang X (2017b) Efficient photocatalytic dye degradation over Er-doped BiOBr hollow microspheres wrapped with graphene nanosheets: enhanced solar energy harvesting and charge separation. RSC Adv 7(36):22415–22423.  https://doi.org/10.1039/c7ra02402a CrossRefGoogle Scholar
  53. Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128(49):15666–15671.  https://doi.org/10.1021/ja064164c CrossRefGoogle Scholar
  54. Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, JJ Alvarez P (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44(19):7220–7225.  https://doi.org/10.1021/es100233w CrossRefGoogle Scholar
  55. Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJ (2011) Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ Sci Technol 45(5):1827–1833.  https://doi.org/10.1021/es104009s CrossRefGoogle Scholar
  56. Meng F, Hong Z, Arndt J, Li M, Zhi M, Yang F, Wu N (2012) Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res 5(3):213–221.  https://doi.org/10.1007/s12274-012-0201-x CrossRefGoogle Scholar
  57. Morgan BJ, Watson GW (2010) Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations. J Phys Chem C 114(5):2321–2328.  https://doi.org/10.1021/jp9088047 CrossRefGoogle Scholar
  58. Nadal M, Marquès M, Mari M, Domingo JL (2015) Climate change and environmental concentrations of POPs: a review. Environ Res 143:177–185.  https://doi.org/10.1016/j.envres.2015.10.012 CrossRefGoogle Scholar
  59. Naushad M (2014) Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem Eng J 235:100–108.  https://doi.org/10.1016/j.cej.2013.09.013 CrossRefGoogle Scholar
  60. Net S, El-Osmani R, Prygiel E, Rabodonirina S, Dumoulin D, Ouddane B (2015) Overview of persistent organic pollution (PAHs, Me-PAHs and PCBs) in freshwater sediments from Northern France. J Geochem Explor 148:181–188.  https://doi.org/10.1016/j.gexplo.2014.09.008 CrossRefGoogle Scholar
  61. Neumeister L (2001) Beyond POPs: evaluation of the UNEP chemical substitutes of the POPs pesticides regarding their human and environmental toxicity. Study on Behalf of the Environmental Agency, HamburgGoogle Scholar
  62. Nguyen TB, Doong RA (2017) Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation. RSC Adv 7(79):50006–50016.  https://doi.org/10.1039/c7ra08271a CrossRefGoogle Scholar
  63. Pariatamby A, Kee YL (2016) Persistent organic pollutants management and remediation. Procedia Environ Sci 31:842–848.  https://doi.org/10.1016/j.proenv.2016.02.093 CrossRefGoogle Scholar
  64. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O’shea K, Entezari MH (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349.  https://doi.org/10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  65. Pereira LC, Duarte FV, Varela AT, Rolo AP, Palmeira CM, Dorta DJ (2017) An autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity. Toxicology 376:59–65.  https://doi.org/10.1016/j.tox.2016.05.022 CrossRefGoogle Scholar
  66. Phuruangrat A, Dumrongrojthanath P, Thongtem S, Thongtem T (2018) Hydrothermal synthesis of I-doped Bi2WO6 for using as a visible-light-driven photocatalyst. Mater Lett 224:67–70.  https://doi.org/10.1016/j.matlet.2018.04.082 CrossRefGoogle Scholar
  67. Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, Li Z (2018) Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem Eng J 337:351–371.  https://doi.org/10.1016/j.cej.2017.12.092 CrossRefGoogle Scholar
  68. Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40(23):7445–7450.  https://doi.org/10.1021/es060413l CrossRefGoogle Scholar
  69. Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M (2010) Dietary exposure to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes and alters the hepatic immune status in mice. Int Immunopharmacol 10(11):1420–1427.  https://doi.org/10.1016/j.intimp.2010.08.009 CrossRefGoogle Scholar
  70. Qiang Z, Macauley JJ, Mormile MR, Surampalli R, Adams CD (2006) Treatment of antibiotics and antibiotic resistant bacteria in swine wastewater with free chlorine. J Agric Food Chem 54(21):8144–8154.  https://doi.org/10.1021/jf060779h CrossRefGoogle Scholar
  71. Qin J, Yang C, Cao M, Zhang X, Saravanan R, Limpanart S, Mab M, Liu R (2017) Two-dimensional porous sheet-like carbon-doped ZnO/g-C3N4nanocomposite with high visible-light photocatalytic performance. Mater Lett 189:156–159.  https://doi.org/10.1016/j.matlet.2016.12.007 CrossRefGoogle Scholar
  72. Quero-Pastor MJ, Garrido-Perez MC, Acevedo A, Quiroga JM (2014) Ozonation of ibuprofen: a degradation and toxicity study. Sci Total Environ 466:957–964.  https://doi.org/10.1016/j.scitotenv.2013.07.067 CrossRefGoogle Scholar
  73. Ramesh A, Archibong AE, Niaz MS (2010) Ovarian susceptibility to benzo[a]pyrene: tissue burden of metabolites and DNA adducts in F-344 rats. J Toxicol Environ Health A 73(23):1611–1625.  https://doi.org/10.1080/15287394.2010.514225 CrossRefGoogle Scholar
  74. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5(3):182–189.  https://doi.org/10.1016/S2221-1691(15)30003-4 CrossRefGoogle Scholar
  75. Romero-Sáez M, Jaramillo LY, LY RS, Benito N, Pabón E, Mosquera E, Gracia F (2017) Notable photocatalytic activity of TiO2-polyethylene nanocomposites for visible light degradation of organic pollutants. Express Polym Lett 11(11):899–909.  https://doi.org/10.3144/expresspolymlett.2017.86 CrossRefGoogle Scholar
  76. Ruge Z, Muir D, Helm P, Lohmann R (2015) Concentrations, trends, and air–water exchange of PAHs and PBDEs derived from passive samplers in Lake Superior in 2011. Environ Sci Technol 49(23):13777–13786.  https://doi.org/10.1021/acs.est.5b02611 CrossRefGoogle Scholar
  77. Saravanan R, Shankar H, Prakash T, Narayanan V, Stephen A (2011) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125(1–2):277–280.  https://doi.org/10.1016/j.matchemphys.2010.09.030 CrossRefGoogle Scholar
  78. Saravanan R, Manoj D, Qin J, Naushad M, Gracia F, Lee AF, MansoobKhan MM, Gracia-Pinilla MA (2018) Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Saf Environ Prot 120:339–347.  https://doi.org/10.1016/j.psep.2018.09.015 CrossRefGoogle Scholar
  79. Schecter A, Malik N, Haffner D, Smith S, Harris TR, Paepke O, Birnbaum L (2010) Bisphenol a (BPA) in US food. Environ Sci Technol 44(24):9425–9430.  https://doi.org/10.1021/es102785d CrossRefGoogle Scholar
  80. Senthilkumar PK, Robertson LW, Ludewig G (2012) PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK). Toxicol Appl Pharmacol 259(1):115–123.  https://doi.org/10.1016/j.taap.2011.12.015 CrossRefGoogle Scholar
  81. Seza A, Soleimani F, Naseri N, Soltaninejad M, Montazeri SM, Sadrnezhaad SK, Mohammadi MR, Moghadam HA, Forouzandeh M, Amin MH (2018) Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting. Appl Surf Sci 440:153–161.  https://doi.org/10.1016/j.apsusc.2018.01.133 CrossRefGoogle Scholar
  82. Jassal V, Shanker U, Kaith BS, Shankar S (2015) Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5(33):26141–26149.  https://doi.org/10.1039/c5ra03266k CrossRefGoogle Scholar
  83. Shanker U, Jassal V, Rani M (2016) Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight. RSC Adv 6(97):94989–94999.  https://doi.org/10.1039/c6ra17555d CrossRefGoogle Scholar
  84. Shanker U, Jassal V, Rani M (2017) Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. J Environ Manag 204:337–348.  https://doi.org/10.1016/j.jenvman.2017.09.015 CrossRefGoogle Scholar
  85. Shao YY, Ye WD, Sun CY, Liu CL, Wang Q (2017) Visible-light-induced degradation of polybrominated diphenyl ethers with AgI–TiO2. RSC Adv 7(62):39089–39095.  https://doi.org/10.1039/c7ra07106j CrossRefGoogle Scholar
  86. Shao YY, Ye WD, Sun CY, Liu CL, Wang Q, Chen CC, Gu JY, Chen XQ (2018) Enhanced photoreduction degradation of polybromodiphenyl ethers with Fe3O4-gC3N4 under visible light irradiation. RSC Adv 8(20):10914–10921.  https://doi.org/10.1039/c8ra01356j CrossRefGoogle Scholar
  87. Sher Shah MS, Park AR, Zhang K, Park JH, Yoo PJ (2012) Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4(8):3893–3901.  https://doi.org/10.1021/am301287m CrossRefGoogle Scholar
  88. Silverstone AE, Rosenbaum PF, Weinstock RS, Bartell SM, Foushee HR, Shelton C, Pavuk M, Anniston Environmental Health Research Consortium (2012) Polychlorinated biphenyl (PCB) exposure and diabetes: results from the Anniston Community Health Survey. Environ Health Perspect 120(5):727–732.  https://doi.org/10.1289/ehp.1104247 CrossRefGoogle Scholar
  89. Singh L, Agarwal T (2018) PAHs in Indian diet: assessing the cancer risk. Chemosphere 202:366–376.  https://doi.org/10.1016/j.chemosphere.2018.03.100 CrossRefGoogle Scholar
  90. Singh Z, Kaur J, Kaur R, Hundal SS (2016) Toxic effects of organochlorine pesticides: a review. Am J Biosci 4(3–1):11–18.  https://doi.org/10.11648/j.ajbio.s.2016040301.13 CrossRefGoogle Scholar
  91. Son S, Nam K, Kim H, Gye MC, Shin I (2018) Cytotoxicity measurement of Bisphenol A (BPA) and its substitutes using human keratinocytes. Environ Res 164:655–659.  https://doi.org/10.1016/j.envres.2018.03.043 CrossRefGoogle Scholar
  92. Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B 170:90–123.  https://doi.org/10.1016/j.apcatb.2014.12.050 CrossRefGoogle Scholar
  93. Tian H, Li J, Ge M, Zhao Y, Liu L (2012) Removal of bisphenol A by mesoporous BiOBr under simulated solar light irradiation. Catal Sci Technol 2(11):2351–2355.  https://doi.org/10.1039/c2cy20303k CrossRefGoogle Scholar
  94. Tian J, Zhao Z, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43(20):6920–6937.  https://doi.org/10.1039/c4cs00180j CrossRefGoogle Scholar
  95. Tseng TK, Lin YS, Chen YJ, Chu H (2010) A review of photocatalysts prepared by sol-gel method for VOCs removal. Int J Mol Sci 11(6):2336–2361.  https://doi.org/10.3390/ijms11062336 CrossRefGoogle Scholar
  96. Verhaert V, Newmark N, D’Hollander W, Covaci A, Vlok W, Wepener V, Addo-Bediako A, Jooste A, Teuchies J, Blust R, Bervoets L (2017) Persistent organic pollutants in the Olifants River Basin, South Africa: bioaccumulation and trophic transfer through a subtropical aquatic food web. Sci Total Environ 586:792–806.  https://doi.org/10.1016/j.scitotenv.2017.02.057 CrossRefGoogle Scholar
  97. Von Gunten U (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467.  https://doi.org/10.1016/S0043-1354(02)00457-8 CrossRefGoogle Scholar
  98. Wang T, Wang Y, Liao C, Cai Y, Jiang G (2009) Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm convention on persistent organic pollutants. Environ Sci Technol 43:5171–5175.  https://doi.org/10.1021/es900464a CrossRefGoogle Scholar
  99. Wang N, Guo X, Xu J, Kong X, Gao S, Shan Z (2014) Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China. J Environ Sci Health B 49(7):468–479.  https://doi.org/10.1080/03601234.2014.896660 CrossRefGoogle Scholar
  100. Wang Q, Yang C, Zhang G, Hu L, Wang P (2017) Photocatalytic Fe-doped TiO2/PSF composite UF membranes: characterization and performance on BPA removal under visible-light irradiation. Chem Eng J 319:39–47.  https://doi.org/10.1016/j.cej.2017.02.145 CrossRefGoogle Scholar
  101. Water Research Commission (2001) State of the rivers report: Crocodile, Sabie-Sand and Olifants River systems. Report No. TT 147/01. Water Research Commission. PretoriaGoogle Scholar
  102. Wei L, Shifu C, Huaye Z, Xiaoling Y (2011) Preparation, characterization of p–n heterojunction photocatalyst CuBi2O4/Bi2WO6 and its photocatalytic activities. J Exp Nanosci 6(2):102–120.  https://doi.org/10.1080/17458081003770295 CrossRefGoogle Scholar
  103. Wen L, Ding K, Huang S, Zhang Y, Li Y, Chen W (2017) Why does F-doping enhance the photocatalytic water-splitting performance of mBiVO4? – a density functional theory study. New J Chem 41(3):1094–1102.  https://doi.org/10.1039/c6nj02400a CrossRefGoogle Scholar
  104. Xia D, Lo IM (2016) Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Res 100:393–404.  https://doi.org/10.1016/j.watres.2016.05.026 CrossRefGoogle Scholar
  105. Xia J, Di J, Yin S, Xu H, Zhang J, Xu Y, Xu L, Li H, Ji M (2014) Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity. RSC Adv 4(1):82–90.  https://doi.org/10.1039/c3ra44191a CrossRefGoogle Scholar
  106. Xie X, Kretschmer K, Wang G (2015) Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale 7(32):13278–13292.  https://doi.org/10.1039/c5nr03338a CrossRefGoogle Scholar
  107. Yan H, Wang X, Yao M, Yao X (2013) Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog Nat Sci Mater Int 23(4):402–407.  https://doi.org/10.1016/j.pnsc.2013.06.002 CrossRefGoogle Scholar
  108. Yin S, Wu T, Li M, Di J, Ji M, Wang B, Chen Y, Xia J, Li H (2017) Controllable synthesis of perovskite-like PbBiO2Cl hollow microspheres with enhanced photocatalytic activity for antibiotic removal. Cryst Eng Comm 19(32):4777–4788.  https://doi.org/10.1039/c7ce00993c CrossRefGoogle Scholar
  109. Yuan D, Huang L, Li Y, Xu Y, Xu H, Huang S, Yan J, He M, Li H (2016) Synthesis and photocatalytic activity of gC3N4/BiOI/BiOBr ternary composites. RSC Adv 6(47):41204–41213.  https://doi.org/10.1039/c6ra05565f CrossRefGoogle Scholar
  110. Zhang LW, Fu HB, Zhu YF (2008) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater 18(15):2180–2189.  https://doi.org/10.1002/adfm.200701478 CrossRefGoogle Scholar
  111. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386.  https://doi.org/10.1021/nn901221k CrossRefGoogle Scholar
  112. Zhang W, Zou L, Dionysio D (2015) A parametric study of visible-light sensitive TiO2 photocatalysts synthesis via a facile sol–gel N-doping method. J Exp Nanosci 10(15):1153–1165.  https://doi.org/10.1080/17458080.2014.985751 CrossRefGoogle Scholar
  113. Zhao X, Cai Z, Wang T, O’Reilly SE, Liu W, Zhao D (2016) A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene. Appl Catal B 187:134–143.  https://doi.org/10.1016/j.apcatb.2016.01.010 CrossRefGoogle Scholar
  114. Zhao Y, Tao C, Xiao G, Su H (2017) Controlled synthesis and wastewater treatment of Ag2O/TiO2 modified chitosan-based photocatalytic film. RSC Adv 7(18):11211–11221.  https://doi.org/10.1039/c6ra27295a CrossRefGoogle Scholar
  115. Zheng X, Xu S, Wang Y, Sun X, Gao Y, Gao B (2018) Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J Colloid Interface Sci 527:202–213.  https://doi.org/10.1016/j.jcis.2018.05.054 CrossRefGoogle Scholar
  116. Zhou X, Liu G, Yu J, Fan W (2012) Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem 22(40):21337–21354.  https://doi.org/10.1039/c2jm31902k CrossRefGoogle Scholar
  117. Zhou T, Xu Y, Wang X, Huang S, Xie M, Xia J, Huang L, Xu H, Li H (2018) Construction of solid–liquid interfacial Fenton-like reaction under visible light irradiation over etched CoxFeyO4–BiOBr photocatalysts. Cat Sci Technol 8(2):551–561.  https://doi.org/10.1039/c7cy01915g CrossRefGoogle Scholar
  118. Zhu SR, Qi Q, Zhao WN, Wu MK, Fang Y, Tao K, Yi FY, Han L (2017) Hierarchical core–shell SiO2@PDA@BiOBr microspheres with enhanced visible-light-driven photocatalytic performance. Dalton Trans 46(34):11451–11458.  https://doi.org/10.1039/c7dt01581j CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hugues Kamdem Paumo
    • 1
  • Raghunath Das
    • 1
  • Madhumita Bhaumik
    • 1
  • Arjun Maity
    • 1
    • 2
    Email author
  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.DST/CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations