Advertisement

Characteristics of a Lower Limb Exoskeleton for Gait and Stair Climbing Therapies

  • Dante A. EliasEmail author
  • Diego Cerna
  • Christian Chicoma
  • Renato Mio
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 71)

Abstract

The first exoskeleton development in Peru was performed at Pontificia Universidad Católica del Perú (PUCP), supported by health professionals, with the aim of treating locomotion disability which is the second main limitation affecting Peruvians these days. It is a lower limb exoskeleton for assisting normal gait and stair climbing in the sagittal plane whose dynamic model was obtained from data collected from over 40 Peruvian young adults. The proposed mechanical design is a hip-knee-ankle device that is electrically actuated and which also allows for passive rotation of hip and ankle in the frontal plane. Additionally, the system includes a trolley and a telescopic guide which allow for horizontal and vertical movement of patient’s center of mass; therefore, these parameters can also be controlled in order to obtain customized therapies. Currently, a simplified model of this design is being implemented in order to verify exoskeleton proper behavior and its response to control system commands.

Keywords

Lower limb Exoskeleton Normal gait 

Notes

Acknowledgements

This work was supported by Innovate Peru, an entity of the Government of Peru, through grant No 203-FINCyT-IA-2013, and by Dirección de Gestión de la Investigacion (DGI-PUCP).

References

  1. 1.
    Ministerio de Salud: Norma Técnica de Salud de la Unidad Productora de Servicios de Medicina de Rehabilitación. 079 MINSA/DGSP-INR V.01. Lima, Perú (2009). Available via MINSA. http://www.dgiem.gob.pe/norma-tecnica-de-salud-de-la-unidad-productora-de-servicios-de-medicina-de-rehabilitacion/. Accessed 3 Nov 2017
  2. 2.
    Superintendencia Nacional de Salud: Registro Nacional de Instituciones Prestadoras de Servicios de Salud. Lima, Perú (2017). Available via SUSALUD. http://app12.susalud.gob.pe. Accessed 3 Nov 2017
  3. 3.
    Consejo Nacional para la Integración de la Persona con Discapacidad: Anuario Estadístico del Registro Nacional de la Persona con Discapacidad. Lima, Perú (2015). Available via CONADIS.http://www.conadisperu.gob.pe/observatorio/index.php/informacion-de-base/registro-nacional-de-la-persona-con-discapacidad/anuario-estadistico-2000-2014. Accessed 3 Nov 2017
  4. 4.
    Young, A.J., Ferris, P.: State-of-the art and future directions for robotics lower limb exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 171–182 (2017)CrossRefGoogle Scholar
  5. 5.
    Frumento, C., Messier, E., Montero, V.: History and future of rehabilitation robotics. Worcester Polytechnic Institute, 2010. Available via DigitalCommons@WPI. https://digitalcommons.wpi.edu/atrc-projects/42/. Accessed 10 Jun 2017
  6. 6.
    Balana, S.K., Agrawal, S.K., Scholz, J.P.: Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: Driessen, B., Herder, J.L., Gelderblom, G.J. (eds) Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands (2007)Google Scholar
  7. 7.
    Jin, X., Cui, X., Agrawal, S.K.: Design of a Cable-driven Active Leg Exoskeleton (C-ALEX) and gait training experiments with human subjects. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA (2015)Google Scholar
  8. 8.
    Jones, R.K.: Pneumatically powered lower limb exoskeletons. University of Michigan. https://deptapps.engin.umich.edu/open/rise/getreport?pid=5&fv=2&file=Pneumatically%20Powered%20Lower%20Limb%20Exoskeletons_Final.compressed.pdf. Accessed 11 Jun 2016
  9. 9.
    Pujada, E.: Modelación y simulación dinámica de un mecanismo exoesquelético para personas con dificultades en la marcha. Mechanical Engineering Thesis, Pontificia Universidad Católica del Perú. Lima, Perú (2009)Google Scholar
  10. 10.
    Winter, D.A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd edn. University of Waterloo Press, Waterloo, Ont (1991)Google Scholar
  11. 11.
    Garces, A.: Diseño de un mecanismo del tipo exoesqueleto de miembros inferiores que permita reproducir patrones de movimiento. Mechanical Engineering Thesis, Pontificia Universidad Católica del Perú. Lima, Perú (2017)Google Scholar
  12. 12.
    Dongo, R., Moscoso, M., Callupe, R., Pajaya, J., Elías, D.: Normal human gait patterns in Peruvian individuals: an exploratory assessment using VICON® motion capture system. In: Romero, E., Lepore, N., Brieva, J., García, J.D. (eds) Proceedings of the 2017 SPIE 13th International Conference on Medical Information Processing and Analysis, San Andres Island, Colombia, vol. 10572 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dante A. Elias
    • 1
    Email author
  • Diego Cerna
    • 1
  • Christian Chicoma
    • 1
  • Renato Mio
    • 1
  1. 1.Laboratory of Research in Biomechanics and Applied Robotics, Department of Mechanical EngineerPontificia Universidad Católica del PerúLimaPeru

Personalised recommendations