Advertisement

Sources of Messages

  • Susannah B. F. Paletz
  • Brooke E. Auxier
  • Ewa M. Golonka
Chapter
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)

Abstract

Messages originate from a variety of sources. Social media users may create content, observe a message or narrative, or seek one out. What people view is influenced by what they search for and what is being shared already in their social networks.

Keywords

Social media Political communication Communication Social media users Narratives Social networks Sociology Sources Information science Social media sharing 

References

  1. Allan, S. (2013). Citizen witnessing: Revisioning journalism in times of crisis (Key concepts in journalism). Cambridge: Polity Press.Google Scholar
  2. Arnsdorf, I. (2017, August 23). Pro-Russian bots take up the right-wing cause after Charlottesville: Analysts tracking Russian influence operations find a feedback loop between Krelmin propaganda and far-right memes. ProPublica. Retrieved from https://www.propublica.org/article/pro-russian-bots-take-up-the-right-wing-cause-after-charlottesville
  3. Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideological diverse news and opinion on Facebook. Science, 348, 1130–1132.CrossRefGoogle Scholar
  4. Fidel, R. (2012). Human information interaction: An ecological approach to information behavior. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  5. Fisher, K. E., & Julien, H. (2009). Information behavior. Annual Review of Information Science and Technology, 43, 1–73.CrossRefGoogle Scholar
  6. Fisher, K. E., & Naumer, C. M. (2006). Information grounds: Theoretical basis and empirical findings on information flow in social settings. In A. Spink & C. Cole (Eds.), New directions in human information behavior (pp. 93–111). Amsterdam: Kluwer.CrossRefGoogle Scholar
  7. Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80, 298–320.CrossRefGoogle Scholar
  8. Grevet, C., Terveen, L., & Gilbert, E. (2014). Managing political differences in social media. In Computer-Supported Collaborative Work 2014 (CSCW’14). Baltimore, MD.Google Scholar
  9. Guess, A., Nyhan, B., & Reifler, J. (2018). Selection exposure to misinformation: Evidence from the consupmtion of fake news during the 2016 U.S. presidential campaign. Downloaded April 2, 2019, from http://www.ask-force.org/web/Fundamentalists/Guess-Selective-Exposure-to-Misinformation-Evidence-Presidential-Campaign-2018.pdf
  10. Kuhlthau, C. C., Heinström, J., & Todd, R. J. (2008). The ‘information search process’ revisited: Is the model still useful? Information Research, 13, 13–14. Retrieved from https://www.researchgate.net/profile/Jannica_Heinstroem/publication/268510128_The_’information_search_process’_revisited_Is_the_model_still_useful/links/5582830b08ae12bde6e4c51e.pdfGoogle Scholar
  11. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.CrossRefGoogle Scholar
  12. Mills, A. (2012). Virality in social media: The SPIN framework. Journal of Public Affairs, 12, 162–169.  https://doi.org/10.1002/pa.1418CrossRefGoogle Scholar
  13. Noel, H., & Nyhan, B. (2011). The “unfriending” problem: The consequences of homophily in friendship retention for causal estimates of social influence. Social Networks, 33, 211–218.CrossRefGoogle Scholar
  14. Oldenburg, R. (1999). The great good place: Cafés, coffee shops, bookstores, bars, hair salons, and other hangouts at the heart of a community. New York: Marlowe.Google Scholar
  15. Paletz, D. L. (2002). The media in American politics: Contents and consequences (2nd ed.). New York: Longman.Google Scholar
  16. Paletz, D. L., Koon, J., Whitehead, E., & Hagens, R. B. (1972). Selective exposure: The potential boomerang effect. Journal of Communication, 22, 48–53.CrossRefGoogle Scholar
  17. Paletz, D. L., Owen, D., & Cook, T. E. (2018). American government and politics in the information age: Version 3.0. Boston, MA: FlatWorld.Google Scholar
  18. Rosen, J. (2006, June 27). The people formerly known as the audience. [Blog post]. Retrieved from http://www.archive.pressthink.org/2006/06/27/ppl_frmr.html/
  19. Scott, M. (2017, May 4). In French elections, alt-right messages and memes don’t translate. New York Times, p. 1. Retrieved from https://www.nytimes.com/2017/05/04/technology/french-elections-alt-right-fake-news-le-pen-macron.html?_r=1
  20. Shearer, E., & Gottfried, J. (2017, September 7). News use across social media platforms 2017. Retrieved from Pew Research Center, Journalism & Media site: http://www.journalism.org/2017/09/07/news-use-across-social-media-platforms-2017/
  21. Takahashi, B., Tandoc, E. C., & Carmichael, C. (2015). Communicating on Twitter during a disaster: An analysis of tweets during Typhoon Haiyan in the Philippines. Computers in Human Behavior, 50, 392–398.CrossRefGoogle Scholar
  22. Turetsky, K. M., & Riddle, T. A. (2017). Porous chambers, echoes of valence, and stereotypes: A network analysis of online news coverage interconnectedness following a nationally polarizing race-related event. Social Psychological and Personality Science, 9, 163–175.  https://doi.org/10.1177/1948550617733519CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Susannah B. F. Paletz
    • 1
  • Brooke E. Auxier
    • 2
  • Ewa M. Golonka
    • 1
  1. 1.Center for Advanced Study of LanguageUniversity of MarylandCollege ParkUSA
  2. 2.Philip Merrill College of JournalismUniversity of MarylandCollege ParkUSA

Personalised recommendations