Green Synthesis and Biogenic Materials, Characterization, and Their Applications

  • Gamze Tan
  • Sedef İlk
  • Ezgi Emul
  • Mehmet Dogan Asik
  • Mesut Sam
  • Serap Altindag
  • Emre Birhanli
  • Elif Apohan
  • Ozfer Yesilada
  • Sandeep Kumar Verma
  • Ekrem Gurel
  • Necdet SaglamEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Modern nanotechnology, together with the help of pharmaceutical and biomedical science, deals with improving new drug delivery systems in order to cure many diseases including cancer. Thus, nanotechnology has generated a potential influence in several disciplines of medicine including cardiology, endocrinology, immunology, oncology, pulmonology, and ophthalmology. Till date, very little work has been done regarding the positive or beneficial influences of nanomaterials on plant species. However, nanotechnology has the potential for creating new materials to develop new methods or tools for incorporation of fictional nanoparticles into the plants to improve their physiological, morphological, or other related characters.

In natural environment, plants and microorganisms like bacteria, algae, yeasts, and fungi have the ability to produce nanosized materials as part of their metabolism. Synthesis of nanoparticles by microorganisms has been arisen as prominent research area in nanoscience day by day. In general, microorganisms produce inorganic nanoparticles in intracellular and/or extracellular way. Microbial production of metallic nanoparticles, especially silver, is achieved by reduction mechanisms of metal ions, while they generate silver nanoparticles as part of their metabolism due to their defense mechanism. Bio-produced silver nanoparticles are also applied for enhanced antimicrobial properties in combination with commercial antibiotics against pathogenic microorganisms. Their antimicrobial and cytotoxic effects are evaluated within this chapter.


  1. Abdeen S, Praseetha P (2013) Diagnostics and treatment of metastatic cancers with magnetic nanoparticles. J Nanomedine Biotherapeutic Discov 3(2):115CrossRefGoogle Scholar
  2. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: a novel tool for a green biotechnology. In: Prasad R, Kumar V, Kumar M, Shanquan W (eds) Fungal nanobionics. Springer Nature, Singapore, pp 61–87CrossRefGoogle Scholar
  3. Adebayo-Tayo BC, Popoola AO, Ajunwa OM (2017) Bacterial synthesis of silver nanoparticles by culture free supernatant of lactic acid bacteria isolated from fermented food samples. Biotechnol J Int 19(1):1–13CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553CrossRefGoogle Scholar
  5. Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One 10(7):e0131178PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  7. Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5):3003–3012PubMedCrossRefGoogle Scholar
  8. Ashour AA, Raafat D, El-Gowelli HM, El-Kamel AH (2015) Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties. Int J Nanomedicine 10:7207–7221PubMedPubMedCentralGoogle Scholar
  9. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart. Scholar
  10. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31(42):11605–11612PubMedCrossRefGoogle Scholar
  11. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984PubMedPubMedCentralCrossRefGoogle Scholar
  12. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.
  13. Azmath P, Baker S, Rakshith D, Satish S (2016) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 24(2):140–146PubMedCrossRefGoogle Scholar
  14. Balakumaran M, Ramachandran R, Kalaichelvan P (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17PubMedCrossRefGoogle Scholar
  15. Belliveau BH, Starodub ME, Cotter C, Trevors JT (1987) Metal resistance and accumulation in bacteria. Biotechnol Adv 5(1):101–127PubMedCrossRefGoogle Scholar
  16. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural polymer drug delivery systems. Springer, ChamGoogle Scholar
  17. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  18. Booker RD, Boysen E (2011) Nanotechnology for dummies. John Wiley & Sons, HobokenGoogle Scholar
  19. Cao Y, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123(32):7961–7962PubMedCrossRefGoogle Scholar
  20. Colman BP, Wang SY, Auffan M, Wiesner MR, Bernhardt ES (2012) Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment. Ecotoxicology 21(7):1867–1877PubMedCrossRefGoogle Scholar
  21. Cossins D (2014) Next generation: nanoparticles augment plant functions. The scientist, exploring life, inspiring innovation, March 16.
  22. Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine-Nanotechnol 9(1):105–110CrossRefGoogle Scholar
  23. Daraio C, Jin S (2012) Synthesis and patterning methods for nanostructures useful for biological applications. Nanotechnology for biology and medicine: at the building block level. Springer, New YorkGoogle Scholar
  24. Das P, Xenopoulos MA, Williams CJ, Hoque ME, Metcalfe CD (2012) Effects of silver nanoparticles on bacterial activity in natural waters. Environ Toxicol Chem 31(1):122–130PubMedCrossRefGoogle Scholar
  25. Devi JS, Bhimba BV (2013) Silver nanoparticles: anti-bacterial and in vitro cytotoxic activity. Int J Biol Ecol Environ Sci 2(2):25–27Google Scholar
  26. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng 58:36–43CrossRefGoogle Scholar
  27. Du J, Singh H, Yi TH (2017) Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artif Cells Nanomed Biotechnol 45(2):211–217PubMedCrossRefGoogle Scholar
  28. El-bialy B, Hamouda R, Khalifa KS, Hamza HA (2017) Cytotoxic effect of biosynthesized silver nanoparticles on Ehrlich ascites tumor cells in mice. Int J Pharmacol 13(2):134–144CrossRefGoogle Scholar
  29. Elgorban AM, Aref SM, Seham SM, Elhindi KM, Bahkali AH, Sayed SR, Manal MA (2016) Extracellular synthesis of silver nanoparticles using Aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere 7(6):844–852CrossRefGoogle Scholar
  30. Elshawy OE, Helmy EA, Rashed LA (2016) Preparation, characterization and in vitro evaluation of the antitumor activity of the biologically synthesized silver nanoparticles. Adv Nanoparticles 5:149–156CrossRefGoogle Scholar
  31. El-Sonbaty S (2013) Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol 4(4–5):73–79PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15(4):241–248CrossRefGoogle Scholar
  33. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 6(1):103–109CrossRefGoogle Scholar
  34. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45(4):1659–1664PubMedCrossRefGoogle Scholar
  36. Gopinath V, Priyadarshini S, Loke MF, Arunkumar J, Marsili E, MubarakAli D, Velusamy P, Vadivelu J (2017) Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem 10(8):1107–1117CrossRefGoogle Scholar
  37. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH (2013a) Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int 2013(535796):1–10CrossRefGoogle Scholar
  38. Gurunathan S, Raman J, Malek NA, John PA, Vikineswary S (2013b) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399–4413PubMedPubMedCentralGoogle Scholar
  39. Gurunathan S, Park JH, Han JW, Kim JH (2015) Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine 10:4203–4222PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hosseini MR, Sarvi MN (2015) Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Mater Sci Semicond Process 40:293–301CrossRefGoogle Scholar
  41. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67(3):1003–1006CrossRefGoogle Scholar
  42. Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci 4(3):225–231CrossRefGoogle Scholar
  43. Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jaidev L, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloid Surface B 81(2):430–433CrossRefGoogle Scholar
  45. Jain N, Bhargava A, Majumdar S, Tarafdar J, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641PubMedCrossRefGoogle Scholar
  46. Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24(4):522–533PubMedCrossRefGoogle Scholar
  47. Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloid Surface B 73(2):219–223CrossRefGoogle Scholar
  48. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol 86(3):682–689CrossRefGoogle Scholar
  49. Kanmani P, Lim ST (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 48(7):1099–1106CrossRefGoogle Scholar
  50. Khan T, Khan MA, Nadhman A (2015) Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl Microbiol Biotechnol 99(23):9923–9934PubMedCrossRefGoogle Scholar
  51. Klueh U, Wagner V, Kelly S, Johnson A, Bryers J (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53(6):621–631PubMedCrossRefGoogle Scholar
  52. Kulkarni RR, Shaiwale NS, Deobagkar DN, Deobagkar DD (2015) Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int J Nanomedicine 10:963–974PubMedPubMedCentralGoogle Scholar
  53. Li QL, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602PubMedCrossRefGoogle Scholar
  54. Li M, Noriega-Trevino ME, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R, Ruiz F, Hoek EM (2011a) Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environ Sci Technol 45(20):8989–8995PubMedCrossRefGoogle Scholar
  55. Li X, Xu H, Chen ZS, Chen G (2011b) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974Google Scholar
  56. Magdi HM, Mourad MH, El-Aziz MMA (2014) Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt J Exp Biol (Bot) 10(1):1–12Google Scholar
  57. Malarkodi C, Chitra K, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Vanaja M, Annadurai G (2013) Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sinica 4(3):59–66Google Scholar
  58. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int 2013:287638PubMedPubMedCentralGoogle Scholar
  59. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551CrossRefGoogle Scholar
  60. Meenal K, Shriwas A, Sharmin K, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95–100CrossRefGoogle Scholar
  61. Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 68(5):278–283PubMedCrossRefGoogle Scholar
  62. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar P, Alam M, Kumar R (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  63. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001b) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588CrossRefGoogle Scholar
  64. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463PubMedCrossRefGoogle Scholar
  65. Muranyi P, Schraml C, Wunderlich J (2010) Antimicrobial efficiency of titanium dioxide-coated surfaces. J Appl Microbiol 108(6):1966–1973PubMedGoogle Scholar
  66. Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JV, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696PubMedPubMedCentralCrossRefGoogle Scholar
  67. Niknejad F, Nabili M, Ghazvini RD, Moazeni M (2015) Green synthesis of silver nanoparticles: advantages of the yeast Saccharomyces cerevisiae model. Curr Med Mycol 1(3):17–24PubMedPubMedCentralCrossRefGoogle Scholar
  68. Omar HH, Bahabri FS, El-Gendy AM (2017) Biopotential application of synthesis nanoparticles as antimicrobial agents by using Laurencia papillosa. Int J Pharmacol 13(3):303–312CrossRefGoogle Scholar
  69. Ortega FG, Fernández-Baldo MA, Fernández JG, Serrano MJ, Sanz MI, Diaz-Mochón JJ, Lorente JA, Raba J (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine 10:2021–2031PubMedPubMedCentralGoogle Scholar
  70. Otari S, Patil R, Ghosh S, Thorat N, Pawar S (2015) Intracellular synthesis of silver nanoparticle by Actinobacteria and its antimicrobial activity. Spectrochim Acta A-M 136:1175–1180CrossRefGoogle Scholar
  71. Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8(3):e59140PubMedPubMedCentralCrossRefGoogle Scholar
  72. Panáček A, Kvitek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253PubMedCrossRefGoogle Scholar
  73. Patil MP, Kim GD (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101(1):79–92PubMedCrossRefGoogle Scholar
  74. Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:417305CrossRefGoogle Scholar
  75. Poinern GEJ, Chapman P, Le X, Fawcett D (2013a) Green biosynthesis of gold nanometre scale plates using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bull 46(3):165–173CrossRefGoogle Scholar
  76. Poinern GEJ, Chapman P, Shah M, Fawcett D (2013b) Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bulletin 2(1):1–7Google Scholar
  77. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:963961CrossRefGoogle Scholar
  78. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, ChamCrossRefGoogle Scholar
  79. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing, ChamCrossRefGoogle Scholar
  80. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  81. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330CrossRefGoogle Scholar
  82. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014PubMedPubMedCentralCrossRefGoogle Scholar
  83. Prasad R, Kumar V, Kumar M, Shanquan W (2018a) Fungal nanobionics: principles and applications. Springer, SingaporeCrossRefGoogle Scholar
  84. Prasad R, Jha A, Prasad K (eds) (2018b) Exploring the realms of nature for nanosynthesis. Nanotechnology in the life sciences, 1st ed. Springer International Publishing, Cham, Switzerland. Scholar
  85. Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P (2014) Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol 174(8):2777–2790PubMedCrossRefGoogle Scholar
  86. Rai M, Duran N (2011) Metal nanoparticles in microbiology. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  87. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metals 2014:1–8. Scholar
  88. Rani R, Dimple S, Jena N, Kundu A, De Sarkar A, Hazra KS (2017) Controlled formation of nanostructures on MoS2 layers by focused laser irradiation. Appl Phys Lett 110(083101):1–5Google Scholar
  89. Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH (2016) Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxidative Med Cell Longev 2016(3685671):1–15CrossRefGoogle Scholar
  90. Rathod D, Golinska P, Wypij M, Dahm H, Rai M (2016) A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Medical Microbiol Immun 205(5):435–447CrossRefGoogle Scholar
  91. Roy K, Sarkar Chandan K, Ghosh Chandan K (2015) Rapid colorimetric detection of Hg2+ ion by green silver nanoparticles synthesized using Dahlia pinnata leaf extract. Green Process Synth 4(6):455–461Google Scholar
  92. Salaheldin TA, Husseiny SM, Al-Enizi AM, Elzatahry A, Cowley AH (2016) Evaluation of the cytotoxic behavior of fungal extracellular synthesized Ag nanoparticles using confocal laser scanning microscope. Int J Mol Sci 17(329):1–11Google Scholar
  93. Salari Z, Danafar F, Dabaghi S, Ataei SA (2016) Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 20(4):459–464CrossRefGoogle Scholar
  94. Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloid Surface B 77(2):214–218CrossRefGoogle Scholar
  95. Sathishkumar M, Sneha K, Yun Y (2009) Palladium nanocrystal synthesis using Curcuma longa tuber extract. Int J Mater Sci 4(1):11–17Google Scholar
  96. Satyavani K, Ramanathan T, Gurudeeban S (2011) Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis). Dig J Nanomater Biostruct 6(3):1019–1024Google Scholar
  97. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interfac 145(1–2):83–96CrossRefGoogle Scholar
  98. Singh G, Babele PK, Shahi SK, Sinha RP, Tyagi MB, Kumar A (2014) Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. J Microbiol Biotechnol 24(10):1354–1367PubMedCrossRefGoogle Scholar
  99. Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh MEA, Yang DC (2015) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomedicine 10:2567–2577PubMedPubMedCentralGoogle Scholar
  100. Singh H, Du J, Yi TH (2017) Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy. Artificial Cell Nanomed B 45(3):602–608CrossRefGoogle Scholar
  101. Skladanowski M, Golinska P, Rudnicka K, Dahm H, Rai M (2016) Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol 205(6):603–613PubMedPubMedCentralCrossRefGoogle Scholar
  102. Song JY, Kwon EY, Kim BS (2009) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33(1):159–164PubMedCrossRefGoogle Scholar
  103. Sonker AS, Richa JP, Rajneesh VK (2017) Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Can J Biotech 1(1):26–37CrossRefGoogle Scholar
  104. Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559PubMedCrossRefGoogle Scholar
  106. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytotoxicity using normal and cancer cell lines. Spectrochim Acta A 114:144–147CrossRefGoogle Scholar
  107. Tamboli DP, Lee DS (2013) Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against Gram positive and Gram negative bacteria. J Hazard Mater 260:878–884PubMedCrossRefGoogle Scholar
  108. Thomas R, Janardhanan A, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol 45(4):1221–1227PubMedCrossRefGoogle Scholar
  109. Venkatesan J, Kim SK, Shim MS (2016) Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials (eBasel) 6(12):1–18Google Scholar
  110. Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435PubMedCrossRefGoogle Scholar
  111. Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418CrossRefGoogle Scholar
  112. Von White G, Kerscher P, Brown RM, Morella JD, McAllister W, Dean D, Kitchens CL (2012) Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J Nanomater 2012:1–12CrossRefGoogle Scholar
  113. Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC (2016) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44(4):1127–1132PubMedGoogle Scholar
  114. Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol 103(1):273–278PubMedCrossRefGoogle Scholar
  115. Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133(7):835–845PubMedCrossRefGoogle Scholar
  116. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27(4):344–350PubMedCrossRefGoogle Scholar
  117. Wypij M, Czarnecka J, Swiecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34(23):1–13Google Scholar
  118. Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30(11):2797–2803PubMedCrossRefGoogle Scholar
  119. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575PubMedCrossRefGoogle Scholar
  120. Zheng X, Chen Y, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45(17):7284–7290PubMedCrossRefGoogle Scholar
  121. Zhou J, Xu NS, Wang ZL (2006) Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater 18(18):2432–2435CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gamze Tan
    • 1
  • Sedef İlk
    • 2
  • Ezgi Emul
    • 3
  • Mehmet Dogan Asik
    • 4
  • Mesut Sam
    • 1
  • Serap Altindag
    • 5
  • Emre Birhanli
    • 6
  • Elif Apohan
    • 6
  • Ozfer Yesilada
    • 6
  • Sandeep Kumar Verma
    • 7
  • Ekrem Gurel
    • 7
  • Necdet Saglam
    • 3
    Email author
  1. 1.Aksaray University, Faculty of Science and Letters, Department of BiologyAksarayTurkey
  2. 2.Nigde Omer Halisdemir University, Faculty of Medicine, Department of ImmunologyNigdeTurkey
  3. 3.Hacettepe University, Nanotechnology and Nanomedicine DivisionAnkaraTurkey
  4. 4.Ankara Yildirim Beyazit University, Musculoskeletal Regenerative MedicineAnkaraTurkey
  5. 5.Aksaray University, Graduate School of ScienceAksarayTurkey
  6. 6.Inonu University, Faculty of Science and Letters, Department of BiologyMalatyaTurkey
  7. 7.Abant Izzet Baysal University, Faculty of Science and Literature, Department of BiologyBoluTurkey

Personalised recommendations