Advertisement

Potential of Biogenic Plant-Mediated Copper and Copper Oxide Nanostructured Nanoparticles and Their Utility

  • Ravindra Pratap Singh
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Copper and copper oxide nanoparticles (Cu NPs) were synthesized using plant resource extract as reducing, stabilizing, capping, chelating, and protecting agent. They have been utilized intensively due to their immense applications in variety of fields including nanomedicine, bioelectronics, and optics; used in conductive films, lubrification, nanofluids, photocatalyst; and used as antimicrobial agent. Nanobiotechnology plays an important role in modern research and can be applied to almost all fields, namely, electronics, chemical industry, space, energy, mechanics, cosmetics, environment, agriculture, healthcare, food, biomedical science, pharmaceutical, drug, cancer or tumor therapy, and gene delivery. The NPs are synthesized via chemical, physical, and biological methods. The biological method, i.e., green synthesis, is one of the best methods for the production of NPs with several advantages over other methods like cost-effective, simple, room temperature, and nontoxic. The nanobiogenic syntheses of copper and copper oxide nanostructured nanoparticles are green and eco-friendly technology which neither use hazardous chemicals nor high temperatures. This chapter discusses the synthesis of copper and copper oxide nanostructured nanoparticles by plant resources and their potential utilities.

Keywords

Copper NPs Copper oxide NPs Biosensing Catalyst Antimicrobial activity Drug delivery and antioxidants 

Notes

Acknowledgments

Dr. Ravindra Pratap Singh thanks to IGNTU, Amarkantak, M.P., India, for providing facilities to prepare this book chapter.

References

  1. Abbas M, Chen Z, Chen J (2018) Shape- and size-controlled synthesis of Cu nanoparticles wrapped on RGO nanosheet catalyst and their outstanding stability and catalytic performance in the hydrogenation reaction of dimethyl oxalate. J Mater Chem A 6(39):19133–19142CrossRefGoogle Scholar
  2. Abbasi S, Saberi D, Heydari A (2017) Copper oxide supported on magnetic nanoparticles (CuO@γ-Fe2O3): an efficient and magnetically separable nanocatalyst for addition of amines to carbodiimides towards synthesis of substituted guanidines. Appl Organomet Chem 31(9):3695CrossRefGoogle Scholar
  3. Abbasi S, Miraki MK, Radfar I, Karimi M, Heydari A (2018a) Efficient synthesis of N-acylureas using copper oxide supported on magnetic nanoparticles in deep eutectic solvent. Chem Select 3(1):77–80Google Scholar
  4. Abbasi Z, Salehi M, Khaleghian A, Kubicki M (2018b) Co(III), V(IV) and Cu(II) complexes of bidentate N,O-donor Schiff base ligands: characterization, anticancer activities and metal oxide nanoparticles preparation via solid state thermal decomposition. Appl Organomet Chem 32(11):4542CrossRefGoogle Scholar
  5. Afzali M, Mostafavi A, Shamspur T (2018) Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. Arab J Chem. Article in PressGoogle Scholar
  6. Ahir M, Bhattacharya S, Karmakar S, Mukhopadhyay A, Mukherjee S, Ghosh S, Chattopadhyay S, Patra P, Adhikary A (2016) Tailored-CuO-nanowire decorated with folic acid mediated coupling of the mitochondrial-ROS generation and miR425-PTEN axis in furnishing potent anti-cancer activity in human triple negative breast carcinoma cells. Biomaterials 76:115–132PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ahmad R, Vaseem M, Tripathy N, Hahn Y-B (2013) Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes. Anal Chem 85(21):10448–10454PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ahmadian Y, Bakravi A, Hashemi H, Namazi H (2018) Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym Bull. Article in PressGoogle Scholar
  9. Ahmed J, Ahamad T, Alhokbany N, Almaswari BM, Ahmad T, Hussain A, Al-Farraj ESS, Alshehri SM (2018) Molten salts derived copper tungstate nanoparticles as bifunctional electro-catalysts for electrolysis of water and supercapacitor applications. Chem Electro Chem. Article in PressGoogle Scholar
  10. Alavi M, Karimi N (2018) Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif Cells Nanomed Biotechnol 46(8):2066–2081PubMedPubMedCentralGoogle Scholar
  11. Albalawi MA, Eldiasty J, Khasim S, Badi N (2017) Effect of Ag, Cu, and ZnO nanoparticle suspensions on the antimicrobial activity of Tribulus terrestris herbal extracts. J Nano Res 45:95–109CrossRefGoogle Scholar
  12. Alishah H, Pourseyedi S, Ebrahimipour SY, Mahani SE, Rafiei N (2017) Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei 28(1):65–71CrossRefGoogle Scholar
  13. Almasi H, Jafarzadeh P, Mehryar L (2018) Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: characterization, antimicrobial and release properties. Carbohydr Polym 186:273–281PubMedCrossRefPubMedCentralGoogle Scholar
  14. Altikatoglu M, Attar A, Erci F, Cristache CM, Isildak I (2017) Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity. Fresenius Environ Bull 25(12):7832–7837Google Scholar
  15. Alzahrani KE, Aniazy A, Alswieleh AM, Wahab R, El-Toni AM, Alghamdi HS (2018) Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. Int J Nanomedicine 13:77–87PubMedCrossRefPubMedCentralGoogle Scholar
  16. Amirzadeh Z, Javadpour S, Shariat MH, Knibbe R (2018) Non-enzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT:PSS matrix. Synth Met 245:160–166CrossRefGoogle Scholar
  17. Anku WW, Shukla SK, Govender PP (2018) Graft Gum Ghatti Caped Cu2O nanocomposite for photocatalytic degradation of naphthol blue black dye. J Inorgan Organomet Polym Mater 28(4):1540–1551CrossRefGoogle Scholar
  18. Antonoglou O, Giannousi K, Arvanitidis J, Mourdikoudis S, Pantazaki A, Dendrinou-Samara C (2017) Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles: antimicrobial activity of CuFe@PEG vs Cu@PEG. J Inorg Biochem 177:159–170PubMedCrossRefPubMedCentralGoogle Scholar
  19. Aparna TK, Sivasubramanian R, Dar MA (2018) One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J Alloys Compd 741:1130–1141CrossRefGoogle Scholar
  20. Arun L, Karthikeyan C, Philip D, Dhayanithi D, Giridharan NV, Unni C (2018) Influence of transition metal ion Ni2+ on optical, electrical, magnetic and antibacterial properties of phyto-synthesized CuO nanostructure. Opt Quant Electron 50(12):414CrossRefGoogle Scholar
  21. Arvand M, Sayyar Ardaki M (2017) Poly-L-cysteine/electrospun copper oxide nanofibers-zinc oxide nanoparticles nanocomposite as sensing element of an electrochemical sensor for simultaneous determination of adenine and guanine in biological samples and evaluation of damage to dsDNA and DNA purine bases by UV radiation. Anal Chim Acta 986:25–41PubMedCrossRefPubMedCentralGoogle Scholar
  22. Awwad AM, Albiss BA, Salem NM (2015) Antibacterial activity of synthesized copper oxide nanoparticles using Malvasylvestris leaf extract. SMU Med J 2:91–101Google Scholar
  23. Babaei S, Bajelani F, Mansourizaveleh O, Abbasi A, Oubari F (2017) A study of the bactericidal effect of copper oxide nanoparticles on Shigella sonnei and Salmonella typhimurium. J Babol Univ Med Sci 19(11):76–81Google Scholar
  24. Bae K-L, Kim J, Lim CK, Nam KM, Song H (2017) Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat Commun 8(1):1156PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bajaj B, Joh HI, Jo SM, Kaur G, Sharma A, Tomar M, Gupta V, Lee S (2015) Controllable one step copper coating on carbon nanofibers for flexible cholesterol biosensor substrates. J Mater Chem B 4(2):229–236CrossRefGoogle Scholar
  26. Bakravi A, Ahamadian Y, Hashemi H, Namazi H (2018) Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol 37(7):2625–2635CrossRefGoogle Scholar
  27. Bao H, Li Y, Liu L, Ai Y, Zhou J, Qi L, Jiang R, Hu Z, Wang J, Sun H, Liang Q (2018) Ultrafine FeCu alloy nanoparticles magnetically immobilized in amine-rich silica spheres for dehalogenation-proof hydrogenation of nitroarenes. Chem Eur J 24(54):14418–14424PubMedCrossRefPubMedCentralGoogle Scholar
  28. Barreto JA, Matterna M, Graham B, Stephan H, Spiccia L (2011) Synthesis, colloidal stability and 64Cu labeling of iron oxide nanoparticles bearing different macrocyclic ligands. New J Chem 35(11):2705–2712CrossRefGoogle Scholar
  29. Bashiri Rezaie A, Montazer M, Mahmoudi Rad M (2018) Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications. J Clean Prod 204:425–436CrossRefGoogle Scholar
  30. Baskar G, Sathivel K, George GB (2016) In vitro cytotoxicity of copper oxide nanobiocomposites synthesized by Catharanthus roseus flower extract against breast cancer cell line. J Chem Pharm Sci 9(1):211–214Google Scholar
  31. Basumatary P, Konwar D, Yoon YS (2018) A novel Ni–Cu/ZnO@MWCNT anode employed in urea fuel cell to attain superior performances. Electrochim Acta 261:78–85CrossRefGoogle Scholar
  32. Bedi RK, Singh I (2010) Room-temperature ammonia sensor based on cationic surfactant-assisted nanocrystalline CuO. ACS Appl Mater Interfaces 2(5):1361–1368PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ben-Sasson M, Lu X, Nejati S, Jaramillo H, Elimelech M (2016) In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 388:1–8CrossRefGoogle Scholar
  34. Bhat KS, Ahmad R, Yoo J-Y, Hahn Y-B (2018) Fully nozzle-jet printed non-enzymatic electrode for biosensing application. J Colloid Interface Sci 512:480–488PubMedCrossRefPubMedCentralGoogle Scholar
  35. Bhushan M, Kumar Y, Periyasamy L, Viswanath AK (2019) Study of synthesis, structural, optical and magnetic characterizations of iron/copper oxide nanocomposites: a promising novel inorganic antibiotic. Mater Sci Eng C 96:66–76CrossRefGoogle Scholar
  36. Bhuvaneshwari V, Vaidehi D, Logpriya S (2018) Green synthesis of copper oxide nanoparticles for biological applications. Microbiol Curr Res 2(1):5–6Google Scholar
  37. Bian Z, Tachikawa T, Zhang P, Fujitsuka M, Majima T (2014) A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat Commun 5:3038PubMedCrossRefPubMedCentralGoogle Scholar
  38. Bondarenko GN, Dvurechenskaya EG, Magommedov ES, Beletskaya IP (2017) Copper(0) nanoparticles supported on Al2O3 as catalyst for carboxylation of terminal alkynes. Catal Lett 147(10):2570–2580CrossRefGoogle Scholar
  39. Bordbar M, Negahdar N, Nasrollahzadeh M (2018) Melissa Officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B. Sep Purif Technol 191:295–300CrossRefGoogle Scholar
  40. Bouazizi N, Vieillard J, Thebault P, Desriac F, Clamens T, Bargougui R, Couvrat N, Thoumire O, Brun N, Ladam G, Morin S, Mofaddel N, Lesouhaitier O, Azzouz A, Le Derf F (2018) Silver nanoparticle embedded copper oxide as an efficient core-shell for the catalytic reduction of 4-nitrophenol and antibacterial activity improvement. Dalton Trans 47(27):9143–9155PubMedCrossRefPubMedCentralGoogle Scholar
  41. Buk V, Emregul E, Emregul KC (2017) Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing. Mater Sci Eng C 74:307–314CrossRefGoogle Scholar
  42. Cai R, Ellis PR, Yin J, Liu J, Brown CM, Griffin R, Chang G, Yang D, Ren J, Cooke K, Bishop PT, Theis W, Palmer RE (2018) Performance of preformed Au/Cu nanoclusters deposited on MgO powders in the catalytic reduction of 4-Nitrophenol in solution. Small 14(13):art. no. 1703734CrossRefGoogle Scholar
  43. Chandel M, Moitra D, Makkar P, Sinha H, Hora HS, Ghosh NN (2018) Synthesis of multifunctional CuFe2O4-reduced graphene oxide nanocomposite: an efficient magnetically separable catalyst as well as high performance supercapacitor and first-principles calculations of its electronic structures. RSC Adv 8(49):27725–27739CrossRefGoogle Scholar
  44. Chen A, Ding Y, Yang Z, Yang S (2015) Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor. Biosens Bioelectron 74:967–973PubMedCrossRefPubMedCentralGoogle Scholar
  45. Chen S, Liu P, Su K, Li X, Qin Z, Xu W, Chen J, Li C, Qiu J (2018a) Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O-Au nanocomposites for signal amplification. Biosens Bioelectron 99:338–345PubMedCrossRefPubMedCentralGoogle Scholar
  46. Chen Z, He Y-C, Chen J-H, Fu X-Z, Sun R, Chen Y-X, Wong C-P (2018b) PdCu alloy flower-like nanocages with high electrocatalytic performance for methanol oxidation. J Phys Chem C 122(16):8976–8983CrossRefGoogle Scholar
  47. Chen L, Liu M, Zhao Y, Kou Q, Wang Y, Liu Y, Zhang Y, Yang J, Jung YM (2018c) Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell. Appl Surf Sci 435:72–78CrossRefGoogle Scholar
  48. Chen R, Lu J, Liu S, Zheng M, Wang Z (2018d) The preparation of Cu2O@Au yolk/shell structures for efficient photocatalytic activity with a self-generated acid etching method. J Mater Sci 53(3):1781–1790CrossRefGoogle Scholar
  49. Chen G, Yang Y, Guo Z, Gao D, Zhao W, Yan H, Wang W-W, Jia C-J, Sun G (2018e) Thermally stable and highly active Pt/CeO2@SiO2 catalysts with a porous/hollow structure. Catal Sci Technol 8(17):4413–4419CrossRefGoogle Scholar
  50. Chen H, Gao Y, Ye L, Yao Y, Chen X, Wei Y, Sun L (2018f) A Cu2Se-Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction. Chem Commun 54(39):4979–4982CrossRefGoogle Scholar
  51. Chung I-M, Rekha K, Rajakumar G, Thiruvengadam M (2018) Production of bioactive compounds and gene expression alterations in hairy root cultures of Chinese cabbage elicited by copper oxide nanoparticles. Plant Cell Tissue Organ Cult 134(1):95–106CrossRefGoogle Scholar
  52. Clarizia L, Vitiello G, Pallotti DK, Silvestri B, Nadagouda M, Lettieri S, Luciani G, Andreozzi R, Maddalena P, Marotta R (2017) Effect of surface properties of copper-modified commercial titanium dioxide photocatalysts on hydrogen production through photoreforming of alcohols. Int J Hydrog Energy 42(47):28349–28362CrossRefGoogle Scholar
  53. Comelli NA, Ruiz ML, Aparicio MSL, Merino NA, Cecilia JA, Rodriguez-Castellon E, Lick ID, Ponzi MI (2018) Influence of the synthetic conditions on the composition, morphology of CuMgAl hydrotalcites and their use as catalytic precursor in diesel soot combustion reactions. Appl Clay Sci 157:148–157CrossRefGoogle Scholar
  54. Dai C, Zhang A, Luo L, Zhang X, Liu M, Wang J, Guo X, Song C (2017) Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation. Catal Today 297:335–343CrossRefGoogle Scholar
  55. Dai Y, Zhu X, Liu H, Lin Y, Sun W, Sun Y, Ding C, Luo C, Wei Q (2018) Morphology-dependent electrochemical behavior of 18-facet Cu7S4 nanocrystals based electrochemical sensing platform for hydrogen peroxide and prostate specific antigen. Biosens Bioelectron 112:143–148PubMedCrossRefPubMedCentralGoogle Scholar
  56. Dante RC, Sánchez-Arévalo FM, Huerta L, Muñoz-Bisesti F, Marquez D, Martín-Ramos P, Lartundo-Rojas L, Chamorro-Posada P, Solorza-Feria O (2017) Photocatalytic activity of a new composite material of Fe (III) oxide nanoparticles wrapped by a matrix of polymeric carbon nitride and amorphous carbon. Fullerenes Nanotubes Carbon Nanostruct 25(11):630–636CrossRefGoogle Scholar
  57. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B: Biointerfaces 101:430–433PubMedCrossRefPubMedCentralGoogle Scholar
  58. Dean J, Yang Y, Austin N, Veser G, Mpourmpakis G (2018) Design of copper-based bimetallic nanoparticles for carbon dioxide adsorption and activation. Chem Sus Chem 11(7):1169–1178CrossRefGoogle Scholar
  59. Delgado K, Quijada R, Palma R, Palza H (2011) Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbiol 53(1):50–54PubMedCrossRefGoogle Scholar
  60. Derkus B, Emregul E, Emregul KC (2015) Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode. Talanta 134:206–214PubMedCrossRefGoogle Scholar
  61. Dey A, Manna S, Chattopadhyay S, Mondal D, Chattopadhyay D, Raj A, Das S, Bag BG, Roy S (2018) Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles induce apoptosis through activation of TNF-α and caspases signaling pathway against cancer cells. J Saudi Chem Soc. Article in PressGoogle Scholar
  62. Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452CrossRefGoogle Scholar
  63. Di Tocco A, Robledo SN, Osuna Y, Sandoval-Cortez J, Granero AM, Vettorazzi NR, Martinez JL, Segura EP, Ilina A, Zon MA, Arevalo FJ, Fernandez H (2018) Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Talanta 190:30–37PubMedCrossRefGoogle Scholar
  64. Dobrucka R (2018) Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. J Inorg Organomet Polym Mater 28(3):812–819CrossRefGoogle Scholar
  65. Dong C-D, Chen C-W, Kao C-M, Hung C-M (2017) Synthesis, characterization, and application of CuO-modified TiO2 electrode exemplified for ammonia electro-oxidation. Process Saf Environ Prot 112:243–253CrossRefGoogle Scholar
  66. Dong J, Ye J, Ariyanti D, Wang Y, Wei S, Gao W (2018) Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles. Chemosphere 204:193–201PubMedCrossRefGoogle Scholar
  67. Duan J, Zhao H, Zhang Z, Wang W (2018a) The Z-scheme heterojunction between TiO2 nanotubes and Cu2O nanoparticles mediated by Ag nanoparticles for enhanced photocatalytic stability and activity under visible light. Ceram Int 44(18):22748–22759CrossRefGoogle Scholar
  68. Duan W, Li A, Chen Y, Zhuo K, Liu J, Wang J (2018b) Ionic liquid-assisted synthesis of reduced graphene oxide–supported hollow spherical PtCu alloy and its enhanced electrocatalytic activity toward methanol oxidation. J Nanopart Res 20(11):art. no. 287CrossRefGoogle Scholar
  69. Duffy LL, Osmond-McLeod MJ, Judy J, King T (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92:293–300CrossRefGoogle Scholar
  70. Duman F, Ocsoy I, Kup FO (2016) Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater Sci Eng C 60:333–338CrossRefGoogle Scholar
  71. Duran B, Hevia SA, Molero L, Isaacs M, Bonardd S, Diaz Diaz D, Leiva A, Saldias C (2019) Novel 3D copper nanoparticles/chitosan/nanoporous alumina (CCSA) membranes with catalytic activity. Characterization and performance in the reduction of methylene blue. J Clean Prod 210:811–820CrossRefGoogle Scholar
  72. Ebrahim-Saraie HS, Heidari H, Rezaei V, Mortazavi SMJ, Motamedifar M (2018) Promising antibacterial effect of copper oxide nanoparticles against several multidrug resistant uropathogens. Pharm Sci 24(3):213–218CrossRefGoogle Scholar
  73. El Khatib KM, Abdel Hameed RM (2011) Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosens Bioelectron 26(8):3542–3548PubMedCrossRefPubMedCentralGoogle Scholar
  74. El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M (2017) Response surface methodology optimization of melanin production by streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J Clust Sci 28(3):1083–1112CrossRefGoogle Scholar
  75. Elhamifar D, Mofatehnia P, Faal M (2017) Magnetic nanoparticles supported Schiff-base/copper complex: an efficient nanocatalyst for preparation of biologically active 3,4-dihydropyrimidinones. J Colloid Interface Sci 504:268–275PubMedCrossRefPubMedCentralGoogle Scholar
  76. El-Nahhal IM, Elmanama AA, Amara N, Qodih FS, Selmane M, Chehimi MM (2018) The efficacy of surfactants in stabilizing coating of nano-structured CuO particles onto the surface of cotton fibers and their antimicrobial activity. Mater Chem Phys 215:221–228CrossRefGoogle Scholar
  77. Esmaeilpour M, Sardarian AR, Firouzabadi H (2018) Dendrimer-encapsulated Cu(Π) nanoparticles immobilized on superparamagnetic Fe3O4@SiO2 nanoparticles as a novel recyclable catalyst for N-arylation of nitrogen heterocycles and green synthesis of 5-substituted 1H-tetrazoles. Appl Organomet Chem 32(4):art. no. 4300CrossRefGoogle Scholar
  78. Fang L, Wang F, Chen Z, Qiu Y, Zhai T, Hu M, Zhang C, Huang K (2017) Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta 167:593–599PubMedCrossRefGoogle Scholar
  79. Farhoudian S, Yadollahi M, Namazi H (2016) Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol 82:837–843PubMedCrossRefPubMedCentralGoogle Scholar
  80. Fedorov AV, Tsapina AM, Bulavchenko OA, Saraev AA, Odegova GV, Ermakov DY, Zubavichus YV, Yakovlev VA, Kaichev VV (2018) Structure and chemistry of Cu-Fe-Al nanocomposite catalysts for CO oxidation. Catal Lett 148(12):3715–3722CrossRefGoogle Scholar
  81. Feng T, Chen X, Qiao X, Sun Z, Wang H, Qi Y, Hong C (2016) Graphene oxide supported rhombic dodecahedral Cu2O nanocrystals for the detection of carcinoembryonic antigen. Anal Biochem 494:101–107PubMedCrossRefPubMedCentralGoogle Scholar
  82. Feng L, Wang C, Li C, Gai S, He F, Li R, An G, Zhong C, Dai Y, Yang Z, Yang P (2018) Multifunctional theranostic nanoplatform based on Fe-mTa2O5@CuS-ZnPc/PCM for bimodal imaging and synergistically enhanced phototherapy. Inorg Chem 57(9):4864–4876PubMedCrossRefPubMedCentralGoogle Scholar
  83. Fu X, Tan X, Yuan R, Chen S (2017) A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Biosens Bioelectron 90:61–68PubMedCrossRefPubMedCentralGoogle Scholar
  84. Gajalakshmi B, Induja S, Sivakumar N, Raghavan PS (2018) Guar gum stabilized copper oxide nanoparticles with enhanced thermal and antimicrobial properties. Asian J Chem 30(5):1099–1101CrossRefGoogle Scholar
  85. Gao Y, Hensen EJM (2018) Highly active and stable spinel-oxide supported gold catalyst for gas-phase selective aerobic oxidation of cyclohexanol to cyclohexanone. Catal Commun 117:53–56CrossRefGoogle Scholar
  86. Gao J, Guo Z, Su F, Gao L, Pang X, Cao W, Du B, Wei Q (2015) Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody. Biosens Bioelectron 63:465–471PubMedCrossRefPubMedCentralGoogle Scholar
  87. Gao Z, Liu X, Deng G, Zhou F, Zhang L, Wang Q, Lu J (2016) Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells. Dalton Trans 45(34):13456–13465PubMedCrossRefPubMedCentralGoogle Scholar
  88. Gao J, Zhang Z, An X, Zhang Y (2017) Designed synthesis CuO hollow microboxes coated with Pd nanosheets and SnO2 nanoparticles as a highly efficient Rochow reaction catalyst. Appl Surf Sci 426:714–724CrossRefGoogle Scholar
  89. Ge S, Ge L, Yan M, Song X, Yu J, Liu S (2013) A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification. Biosens Bioelectron 43(1):425–431PubMedCrossRefPubMedCentralGoogle Scholar
  90. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185(7):art. no. 358CrossRefGoogle Scholar
  91. Germi KG, Shabani F, Khodayari A, Azizian-Kalandaragh Y (2014) Structural and biological properties of CuO nanoparticles prepared under ultrasonic irradiation. Synth React Inorg Met.-Org Nano-Met Chem 44(9):1286–1290CrossRefGoogle Scholar
  92. Ghadari R, Namazi H, Aghazadeh M (2018) Synthesis of graphene oxide supported copper-cobalt ferrite material functionalized by arginine amino acid as a new high–performance catalyst. Appl Organomet Chem 32(1):art. no. e3965CrossRefGoogle Scholar
  93. Ghadi FE, Ghara AR, Naeimi A (2018) Phytochemical fabrication, characterization, and antioxidant application of copper and cobalt oxides nanoparticles using Sesbania sesban plant. Chem Pap 72(11):2859–2869CrossRefGoogle Scholar
  94. Ghafuri H, Dehghani M, Rashidizadeh A, Rabbani M (2019) Synthesis and characterization of magnetic nanocomposite Fe3O4@TiO2/Ag,Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation. Optik 179:646–653CrossRefGoogle Scholar
  95. Ghasemi Estarki H (2017) Simple synthesize of CuAl2O4 nanoparticles by a new morphological control method, characterization of its photocatalytic activity. J Mater Sci Mater Electron 28(19):14584–14590CrossRefGoogle Scholar
  96. Ghidan AY, Al-Antary TM, Awwad AM (2016) Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: effect on green peach Aphid. Environ Nanotechnol Monitor Manag 6:95–98CrossRefGoogle Scholar
  97. Ghosh S, Saha S, Sengupta D, Chattopadhyay S, De G, Basu B (2017) Stabilized Cu2O nanoparticles on macroporous polystyrene resins [Cu2O@ARF]: improved and reusable heterogeneous catalyst for on-water synthesis of triazoles via click reaction. Ind Eng Chem Res 56(41):11726–11733CrossRefGoogle Scholar
  98. Giannousi K, Hatzivassiliou E, Mourdikoudis S, Vourlias G, Pantazaki A, Dendrinou-Samara C (2016) Synthesis and biological evaluation of PEGylated CuO nanoparticles. J Inorg Biochem 164:82–90PubMedCrossRefPubMedCentralGoogle Scholar
  99. Giannousi K, Pantazaki A, Dendrinou-Samara C (2017) Copper-based nanoparticles as antimicrobials. In: Nanostructures for antimicrobial therapy: nanostructures in therapeutic medicine series, pp 515–529CrossRefGoogle Scholar
  100. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408PubMedCrossRefPubMedCentralGoogle Scholar
  101. Glaus C, Rossin R, Welch MJ, Bao G (2010) In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 21(4):715–722PubMedPubMedCentralCrossRefGoogle Scholar
  102. Gnanavel V, Palanichamy V, Roopan SM (2017) Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J Photochem Photobiol B Biol 171:133–138CrossRefGoogle Scholar
  103. Gong W, Chen C, Zhang H, Wang G, Zhao H (2018a) In situ synthesis of highly dispersed Cu-Co bimetallic nanoparticles for tandem hydrogenation/rearrangement of bioderived furfural in aqueous-phase. ACS Sustain Chem Eng 6(11):14919–14925CrossRefGoogle Scholar
  104. Gong X, Wang W-W, Fu X-P, Wei S, Yu W-Z, Liu B, Jia C-J, Zhang J (2018b) Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide. Fuel 229:217–226CrossRefGoogle Scholar
  105. Gong S, Chen J, Wu X, Han N, Chen Y (2018c) In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catal Commun 106:25–29CrossRefGoogle Scholar
  106. Gopinath V, Priyadarshini S, Al-Maleki AR, Alagiri M, Yahya R, Saravanan S, Vadivelu J (2016) In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Adv 6(112):110986–110995CrossRefGoogle Scholar
  107. Gopiraman M, Chung I-M (2017) Highly active and cost-effective CuO-based carbon nanocomposite with unique morphology for catalytic synthesis of imines under solvent-free conditions. J Taiwan Inst Chem Eng 81:455–464CrossRefGoogle Scholar
  108. Gu H, Chen X, Chen F, Zhou X, Parsaee Z (2018) Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason Sonochem 41:109–119PubMedCrossRefPubMedCentralGoogle Scholar
  109. Guin R, Shakila Banu A, Kurian GA (2015) Synthesis of Copper oxide nanoparticles using Desmodium gangeticum aqueous root extract. Int J Pharm Pharm Sci 7:60–65Google Scholar
  110. Gulati U, Chinna Rajesh U, Rawat DS (2018) Reduced graphene oxide supported copper oxide nanocomposites from a renewable copper mineral precursor: a green approach for decarboxylative C(sp3)-H activation of proline amino acid to afford value-added synthons. ACS Sustain Chem Eng 6(8):10039–10051CrossRefGoogle Scholar
  111. Guo A, Li Y, Cao W, Meng X, Wu D, Wei Q, Du B (2015) An electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 199 based on Au@CuxOS yolk-shell nanostructures with porous shells as labels. Biosens Bioelectron 63:39–46PubMedCrossRefPubMedCentralGoogle Scholar
  112. Gupta S, Chandna N, Dubey P, Singh AK, Jain N (2018) GO-Cu7S4 catalyzed: ortho -aminomethylation of phenol derivatives with N, N -dimethylbenzylamines: site-selective oxidative CDC. Chem Commun 54(54):7511–7514CrossRefGoogle Scholar
  113. Han L, Hao Y-N, Wei X, Chen X-W, Shu Y, Wang J-H (2017) Hollow copper sulfide nanosphere-doxorubicin/graphene oxide core-shell nanocomposite for photothermo-chemotherapy. ACS Biomater Sci Eng 3(12):3230–3235CrossRefGoogle Scholar
  114. Hasan MM, Tolba SA, Allam NK (2018) In Situ formation of graphene stabilizes zero-valent copper nanoparticles and significantly enhances the efficiency of photocatalytic water splitting. ACS Sustain Chem Eng. Article in PressGoogle Scholar
  115. Hasanpour F, Taei M, Tahmasebi S (2018) Ultra-sensitive electrochemical sensing of acetaminophen and codeine in biological fluids using CuO/CuFe2O4 nanoparticles as a novel electrocatalyst. J Food Drug Anal 26(2):879–886PubMedCrossRefPubMedCentralGoogle Scholar
  116. Hassan NS, Jalil AA, Triwahyono S, Hitam CNC, Rahman AFA, Khusnun NF, Mamat CR, Asmadi M, Mohamed M, Ali MW, Prasetyoko D (2018) Exploiting copper–silica–zirconia cooperative interactions for the stabilization of tetragonal zirconia catalysts and enhancement of the visible-light photodegradation of bisphenol A. J Taiwan Inst Chem Eng 82:322–330CrossRefGoogle Scholar
  117. Hemmati S, Mehrazin L, Hekmati M, Izadi M, Veisi H (2018) Biosynthesis of CuO nanoparticles using Rosa canina fruit extract as a recyclable and heterogeneous nanocatalyst for C-N Ullmann coupling reactions. Mater Chem Phys 214:527–532CrossRefGoogle Scholar
  118. Heusing S, Oliveira PW, Kraker E, Haase A, Palfinger C, Veith M (2008) Development of printed ITO coatings on PET and PEN foil for flexible organic photodiodes. Proc SPIE Int Soc Opt Eng 6999:art. no. 69992IGoogle Scholar
  119. Hong L, Liu A-L, Li G-W, Chen W, Lin X-H (2013) Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens Bioelectron 43(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  120. Hong D, Cao G, Qu J, Deng Y, Tang J (2018) Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites. J Mater Sci Technol 34(12):2359–2367CrossRefGoogle Scholar
  121. Hoseini SJ, Bahrami M, Samadi Fard Z, Fatemeh Hashemi Fard S, Roushani M, Agahi BH, Hashemi Fath R, Sarmoor SS (2018) Designing of some platinum or palladium-based nanoalloys as effective electrocatalysts for methanol oxidation reaction. Int J Hydrog Energy 43(32):15095–15111CrossRefGoogle Scholar
  122. Hosseini SG, Ayoman E, Kashi A (2018a) Preparation, characterization and catalytic behavior of copper oxide nanoparticles on thermal decomposition of ammonium perchlorate particles. Part Sci Technol 36(6):751–761CrossRefGoogle Scholar
  123. Hosseini SG, Khodadadipoor Z, Mahyari M (2018b) CuO nanoparticles supported on three-dimensional nitrogen-doped graphene as a promising catalyst for thermal decomposition of ammonium perchlorate. Appl Organomet Chem 32(1):3959CrossRefGoogle Scholar
  124. Hosseinzadeh H, Ramin S (2018) Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int J Biol Macromol 113:859–868PubMedCrossRefPubMedCentralGoogle Scholar
  125. Hosseinzadeh R, Mohadjerani M, Mesgar S (2017) Green synthesis of copper oxide nanoparticles using aqueous extract of Convolvulus percicus L. as reusable catalysts in cross-coupling reactions and their antibacterial activity. IET Nanobiotechnol 11(6):725–730CrossRefGoogle Scholar
  126. Hou C, Quan H, Duan Y, Zhang Q, Wang H, Li Y (2013) Facile synthesis of water-dispersible Cu2O nanocrystal-reduced graphene oxide hybrid as a promising cancer therapeutic agent. Nanoscale 5(3):1227–1232PubMedCrossRefPubMedCentralGoogle Scholar
  127. Hou M, Ma L, Ma H, Yue M (2018) In situ characterization of Cu-Fe-Ox catalyst for water-gas shift reaction. J Mater Sci 53(2):1065–1075CrossRefGoogle Scholar
  128. Hsiao C-H, Lin J-H (2017) Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts. Carbon 124:637–641CrossRefGoogle Scholar
  129. Hu A-L, Liu Y-H, Deng H-H, Hong G-L, Liu A-L, Lin X-H, Xia X-H, Chen W (2014) Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron 61:374–378PubMedCrossRefPubMedCentralGoogle Scholar
  130. Hu A-L, Deng H-H, Zheng X-Q, Wu Y-Y, Lin X-L, Liu A-L, Xia X-H, Peng H-P, Chen W, Hong G-L (2017) Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics. Biosens Bioelectron 97:21–25PubMedCrossRefPubMedCentralGoogle Scholar
  131. Hu Y, Yang S, Tao B, Liu X, Lin K, Yang Y, Fan R, Xia D, Hao D (2019) Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum 159:105–111CrossRefGoogle Scholar
  132. Huang X, Zhang W, Guan G, Song G, Zou R, Hu J (2017) Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc Chem Res 50(10):2529–2538PubMedCrossRefPubMedCentralGoogle Scholar
  133. Huang Y, Xiao A, Hou G, Li H, Guo T, Guan B-O (2018) Photocatalysis in an evanescent field: an: in situ approach to studying photocatalytic performance by tracing interfacial refractive index changes and kinetics. J Mater Chem A 6(41):20513–20522CrossRefGoogle Scholar
  134. Ibrahim S, Majeed I, Qian Y, Iqbal A, Zhao D, Turner DR, Nadeem MA (2018) Novel hetero-bimetallic coordination polymer as a single source of highly dispersed Cu/Ni nanoparticles for efficient photocatalytic water splitting. Inorgan Chem Front 5(8):1816–1827CrossRefGoogle Scholar
  135. Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S (2017) Green synthesis of copper oxide nanoparticles using abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. Trop J Pharm Res 16(4):743–753CrossRefGoogle Scholar
  136. Imani R, Qiu Z, Younesi R, Pazoki M, Fernandes DLA, Mitev PD, Edvinsson T, Tian H (2018) Unravelling in-situ formation of highly active mixed metal oxide CuInO2 nanoparticles during CO2 electroreduction. Nano Energy 49:40–50CrossRefGoogle Scholar
  137. Jadhav MS, Kulkarni S, Raikar P, Barretto DA, Vootla SK, Raikar US (2018) Green biosynthesis of CuO & Ag-CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J Chem 42(1):204–213CrossRefGoogle Scholar
  138. Jafarirad S, Rasoulpour I, Divband B, Hammami Torghabe I, Kosari-Nasab M (2018) Innovative biocapped CuO nano-photocatalysts: a rapid and green method for photocatalytic degradation of 4-nitrophenol. Mater Res Innov 22(7):415–421Google Scholar
  139. Janmohammadi M, Amini M, Sabaghnia N, Akbari A, Gautam S, Hwa Chae K (2018) Synthesis of copper nanoparticles supported on MoO3 using sun spurge leaf extract and their catalytic activity. Appl Organomet Chem 32(11):art. no. e4531CrossRefGoogle Scholar
  140. Jarrett BR, Gustafsson B, Kukis DL, Louie AY (2008) Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem 19(7):1496–1504PubMedPubMedCentralCrossRefGoogle Scholar
  141. Jayandran M, Haneefa MM, Balasubramanian V (2016a) Green synthesis, characterization and antimicrobial activity studies of salicylalchitosan biofunctionalized copper oxide nanoparticles. Asian J Chem 28(7):1463–1468CrossRefGoogle Scholar
  142. Jayandran M, Haneefa MM, Balasubramanian V (2016b) Green synthesis, characterization and antimicrobial activity studies of curcuminaniline biofunctionalized copper oxide nanoparticles. Indian J Sci Technol 9(3):1–9CrossRefGoogle Scholar
  143. Jeong HM, Yeo BS, Kwon Y (2018) Chapter 3: copper catalysts for the electrochemical reduction of carbon dioxide. RSC Energy Environ Ser (21):63–87Google Scholar
  144. Jha PK, Jha R, Gupta S, Sathishkumar G, Hossain M, Guha SK (2016) Comparative nanoscale interaction of Tio2/ZnO/Cu with human spermatozoa for biomedical application. Adv Sci Eng Med 8(5):360–369CrossRefGoogle Scholar
  145. Ji Y, Liu J, Liu X, Yuen MMF, Fu X-Z, Yang Y, Sun R, Wong C-P (2017) 3D porous Cu@Cu2O films supported Pd nanoparticles for glucose electrocatalytic oxidation. Electrochim Acta 248:299–306CrossRefGoogle Scholar
  146. Ji S, Miao C, Liu H, Feng L, Yang X, Guo H (2018) A hydrothermal synthesis of Fe3O4@C hybrid nanoparticle and magnetic adsorptive performance to remove heavy metal ions in aqueous solution. Nanoscale Res Lett 13:art. no. 178CrossRefGoogle Scholar
  147. Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25(6):1402–1407PubMedCrossRefPubMedCentralGoogle Scholar
  148. Jiang X, Li X, Wang J, Long D, Ling L, Qiao W (2018) Three-dimensional Mn-Cu-Ce ternary mixed oxide networks prepared by polymer-assisted deposition for HCHO catalytic oxidation. Catal Sci Technol 8(10):2740–2749CrossRefGoogle Scholar
  149. Jimenez-Hernandez L, Estevez-Hernandez O, Hernandez-Sanchez M, Díaz JA, Farias-Sánchez M, Reguera E (2016) 3-mercaptopropionic acid surface modification of Cu-doped ZnO nanoparticles: their properties and peroxidase conjugation. Colloids Surf A Physicochem Eng Asp 489:351–359CrossRefGoogle Scholar
  150. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn 86(3): 682–689CrossRefGoogle Scholar
  151. Kalaiarasi A, Sankar R, Anusha C, Saravanan K, Aarthy K, Karthic S, Mathuram TL, Ravikumar V (2018) Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnol Lett 40(2):249–256PubMedCrossRefPubMedCentralGoogle Scholar
  152. Kalimuthu S, Meenakshisundaram I, Ponnaiah G, Sekar K (2018) Boron carbonitride sheet/ Cu2O composite for an efficient photocatalytic hydrogen evolution. Mater Chem Phys 219:204–211CrossRefGoogle Scholar
  153. Karimi Z, Sadeghi M, Mataji-Kojouri N (2018) 64Cu, a powerful positron emitter for immunoimaging and theranostic: production via natZnO and natZnO-NPs. Appl Radiat Isot 137:56–61PubMedCrossRefPubMedCentralGoogle Scholar
  154. Karthik AD, Geetha K (2013) Synthesis of copper precursor, copper and its oxide nanoparticles by green chemical reduction method and its antimicrobial activity. J Appl Pharm Sci 3(5):16–21Google Scholar
  155. Katwal R, Kaur H, Sharma G, Naushad M, Pathania D (2015) Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem 31:173–184CrossRefGoogle Scholar
  156. Kaur G, Dogra V, Kumar R, Kumar S, Bhanjana G, Dilbaghi N, Singhal NK (2018) DNA interaction, anti-proliferative effect of copper oxide nanocolloids prepared from metallosurfactant based microemulsions acting as precursor, template and reducing agent. Int J Pharm 535(1–2):95–105PubMedCrossRefPubMedCentralGoogle Scholar
  157. Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G (2018) Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C 82:46–59CrossRefGoogle Scholar
  158. Khatibi ES, Haghighi M, Mahboob S (2019) Efficient surface design of reduced graphene oxide, carbon nanotube and carbon active with cupper nanocrystals for enhanced simulated-solar-light photocatalytic degradation of acid orange in water. Appl Surf Sci 465:937–949CrossRefGoogle Scholar
  159. Khoshnamvand N, Kord Mostafapour F, Mohammadi A, Faraji M (2018) Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express 8(1):art. no. 48CrossRefGoogle Scholar
  160. Kim S, Kang SW, Kim A, Yusuf M, Park JC, Park KH (2018) A highly efficient nano-sized Cu2O/SiO2 egg-shell catalyst for C-C coupling reactions. RSC Adv 8(12):6200–6205CrossRefGoogle Scholar
  161. Koca FD, Demirezen Yilmaz D, Duman F, Ocsoy I (2018) Comparison of phytotoxic effects of bio-synthesised copper oxide nanoparticle and ionic copper on Elodea Canadensis. Chem Ecol 34(9):839–853CrossRefGoogle Scholar
  162. Kosmambetova GR, Kalchuk NS, Strizhak PE (2018) Effect of ultrasonic treatment of the mechanically mixed nanosized CuO–MgO solids on their catalytic properties in the CO oxidation. Chem Eng Commun 205(6):797–804CrossRefGoogle Scholar
  163. Kostic M, Radović M, Velinov N, Najdanović S, Bojić D, Hurt A, Bojić A (2018) Synthesis of mesoporous triple-metal nanosorbent from layered double hydroxide as an efficient new sorbent for removal of dye from water and wastewater. Ecotoxicol Environ Saf 159:332–341PubMedCrossRefPubMedCentralGoogle Scholar
  164. Kumar B, Kumari S, Luis C, Alexis D, Yolanda A (2017) Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc 21(1):S475–S480CrossRefGoogle Scholar
  165. Kumar K, Shyamlal BRK, Gupta A, Mathur M, Swami AK, Chaudhary S (2018) Efficacious fungicidal potential of composite derived from nano-aggregates of Cu-Diclofenac complexes and ZnO nanoparticles. Comp Commun 10:81–88CrossRefGoogle Scholar
  166. Kuppusamy P, Mashitah MY (2016) Gaanty Pragas Maniam, Natanamurugaraj Govindan, biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. Saudi Pharm J 24(4):473–484PubMedCrossRefPubMedCentralGoogle Scholar
  167. Kwak K, Chongyoup K (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 17:35–40Google Scholar
  168. Lai X, Zhao H, Zhang Y, Guo K, Xu Y, Chen S, Zhang J (2018) Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep 8(1):art. no. 4499CrossRefGoogle Scholar
  169. Lan T, Fallatah A, Suiter E, Padalkar S (2017) Size controlled copper (I) oxide nanoparticles influence sensitivity of glucose biosensor. Sensors (Switzerland) 17(9):art. no. 1944CrossRefGoogle Scholar
  170. Lang Y, Zhang J, Feng Z, Liu X, Zhu Y, Zeng T, Zhao Y, Chen R, Shan B (2018) CO oxidation over MOx (M = Mn, Fe, Co, Ni, Cu) supported on SmMn2O5 composite catalysts. Catal Sci Technol 8(21):5490–5497CrossRefGoogle Scholar
  171. Lavanya N, Radhakrishnan S, Sudhan N, Sekar C, Leonardi SG, Cannilla C, Neri G (2014) Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode. Nanotechnology 25(29):art. no. 295501CrossRefGoogle Scholar
  172. Lavanya N, Nizeyimana Claude J, Sekar C (2018) Electrochemical determination of purine and pyrimidine bases using copper doped cerium oxide nanoparticles. J Colloid Interface Sci 530:202–211PubMedCrossRefPubMedCentralGoogle Scholar
  173. Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y, Jing T (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128PubMedCrossRefPubMedCentralGoogle Scholar
  174. Li X, Yu S, Yan T, Zhang Y, Du B, Wu D, Wei Q (2017a) A sensitive electrochemiluminescence immunosensor based on Ru(bpy)32+ in 3D CuNi oxalate as luminophores and graphene oxide–polyethylenimine as released Ru(bpy)32+ initiator. Biosens Bioelectron 89:1020–1025PubMedCrossRefPubMedCentralGoogle Scholar
  175. Li F, Li Y, Feng J, Dong Y, Wang P, Chen L, Chen Z, Liu H, Wei Q (2017b) Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosens Bioelectron 87:630–637PubMedCrossRefPubMedCentralGoogle Scholar
  176. Li F, Zhang R, Li Q, Zhao S (2017c) Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction. Res Chem Intermed 43(11):6505–6519CrossRefGoogle Scholar
  177. Li S, Zhang L, Chen X, Wang T, Zhao Y, Li L, Wang C (2018a) Selective growth synthesis of ternary janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Appl Mater Interfaces 10(28):24137–24148PubMedCrossRefPubMedCentralGoogle Scholar
  178. Li G, Zhang X, Feng W, Fang X, Liu J (2018b) Nanoporous CeO2-Ag catalysts prepared by etching the CeO2/CuO/Ag2O mixed oxides for CO oxidation. Corros Sci 134:140–148CrossRefGoogle Scholar
  179. Li X, Lu P, Wu B, Wang Y, Wang H, Du B, Pang X, Wei Q (2018c) Electrochemiluminescence quenching of luminol by CuS in situ grown on reduced graphene oxide for detection of N-terminal pro-brain natriuretic peptide. Biosens Bioelectron 112:40–47PubMedCrossRefPubMedCentralGoogle Scholar
  180. Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q (2018d) Facile synthesis of MoS2@Cu2O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosens Bioelectron 100:512–518PubMedCrossRefPubMedCentralGoogle Scholar
  181. Li W, He S-A, Su Z-Y, Xu W, Wang X-C (2019) A BiOCl-CuO photocatalyst based on p-n heterojunction and its photocatalytic performance under visible-light. Appl Surf Sci 470:707–715CrossRefGoogle Scholar
  182. Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F (2012) Preparation and antibacterial activities of polyaniline/Cu 0.05Zn 0.95O nanocomposites. Dalton Trans 41(9):2804–2811PubMedCrossRefPubMedCentralGoogle Scholar
  183. Ling P, Zhang Q, Cao T, Gao F (2018) Versatile three-dimensional porous Cu@Cu2O aerogel networks as electrocatalysts and mimicking peroxidases. Angew Chem Int Ed 57(23):6819–6824CrossRefGoogle Scholar
  184. Litvin AP, Martynenko IV, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'Ko YK (2017) Colloidal quantum dots for optoelectronics. J Mater Chem A 5(26):13252–13275CrossRefGoogle Scholar
  185. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45(1):206–212PubMedCrossRefPubMedCentralGoogle Scholar
  186. Liu Y, Han Y, Chen R, Zhang H, Liu S, Liang F (2016) In situ immobilization of copper nanoparticles on polydopamine coated graphene oxide for H2O2 determination. PLoS One 11(7):art. no. 0157926CrossRefGoogle Scholar
  187. Liu Y, Huang Q, Jiang G, Liu D, Yu W (2017) Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J Mater Res 32(18):3605–3615CrossRefGoogle Scholar
  188. Liu S, Peng W, Zhang J, Tong Y, Yuan J, Qi X, Yan X, Sun D, Dai B (2018a) Mesoporous CuO/MgO synthesized by a homogeneous-hydrothermal method and its catalytic performance for the ethynylation reaction of formaldehyde. Energy Sources Part A 40(19):2327–2333CrossRefGoogle Scholar
  189. Liu L-X, Fan G-C, Zhang J-R, Zhu J-J (2018b) Ultrasensitive cathode photoelectrochemical immunoassay based on TiO2 photoanode-enhanced 3D Cu2O nanowire array photocathode and signal amplification by biocatalytic precipitation. Anal Chim Acta 1027:33–40PubMedCrossRefPubMedCentralGoogle Scholar
  190. Logpriya S, Bhuvaneshwari V, Vaidehi D, SenthilKumar RP, Nithya Malar RS, Sheetal BP, Amsaveni R, Kalaiselvi M (2018) Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity. J Nanostruct Chem 8(3):301–309CrossRefGoogle Scholar
  191. Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Ceria nanoparticles shape effects on the structural defects and surface chemistry: implications in CO oxidation by Cu/CeO2 catalysts. Appl Catal B Environ 230:18–28CrossRefGoogle Scholar
  192. Ma Y, Zheng B, Zhao Y, Yuan H, Cai Y, Du C, Xiao D (2013) A sensitive and selective chemosensor for GSSG detection based on the recovered fluorescence of NDPA-Fe3O4 at SiO2-Cu(II) nanomaterial. Biosens Bioelectron 48:138–144PubMedCrossRefPubMedCentralGoogle Scholar
  193. Ma H, Li Y, Wang Y, Hu L, Zhang Y, Fan D, Yan T, Wei Q (2016) Cubic Cu2O nanoframes with a unique edge-truncated structure and a good electrocatalytic activity for immunosensor application. Biosens Bioelectron 78:167–173PubMedCrossRefPubMedCentralGoogle Scholar
  194. Ma R, Yang P, Ma Y, Bian F (2018) Facile synthesis of magnetic hierarchical core–shell structured Fe3O4@PDA-Pd@MOF nanocomposites: highly integrated multifunctional catalysts. Chem Cat Chem 10(6):1446–1454Google Scholar
  195. Maham M, Sajadi SM, Kharimkhani MM, Nasrollahzadeh M (2017) Biosynthesis of the CuO nanoparticles using Euphorbia Chamaesyce leaf extract and investigation of their catalytic activity for the reduction of 4-nitrophenol. IET Nanobiotechnol 11(7):766–772CrossRefGoogle Scholar
  196. Mahapatra M, Kang J, Ramírez PJ, Hamlyn R, Rui N, Liu Z, Orozco I, Senanayake SD, Rodriguez JA (2018) Growth, structure, and catalytic properties of ZnO x grown on CuO x/Cu(111) surfaces. J Phys Chem C 122(46):26554–26562CrossRefGoogle Scholar
  197. Mahjouri S, Movafeghi A, Divband B, Kosari-Nasab M (2018) Toxicity impacts of chemically and biologically synthesized CuO nanoparticles on cell suspension cultures of Nicotiana tabacum. Plant Cell Tissue Organ Cult 135(2):223–234CrossRefGoogle Scholar
  198. Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A (2013) Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9(23):4069–4076PubMedCrossRefPubMedCentralGoogle Scholar
  199. Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4(3):1313–1323PubMedCrossRefPubMedCentralGoogle Scholar
  200. Mandal L, Yang KR, Motapothula MR, Ren D, Lobaccaro P, Patra A, Sherburne M, Batista VS, Yeo BS, Ager JW, Martin J, Venkatesan T (2018) Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl Mater Interfaces 10(10):8574–8584PubMedCrossRefPubMedCentralGoogle Scholar
  201. Manoranjan B, Gitisudha G (2016) Inquiring the photocatalytic activity of cuprous oxide nanoparticles synthesized by a green route on methylene blue dye. Int J Ind Chem 7:157–166CrossRefGoogle Scholar
  202. Manyasree D, Peddi KM, Ravikumar R (2017) CuO nanoparticles: synthesis, characterization and their bactericidal efficacy. Int J Appl Pharmaceut 9(6):71–74CrossRefGoogle Scholar
  203. Mardani HR, Ziari M (2018) Synthesis and characterization of new nanomagnetic coordination composite from Fe3O4 and Cu (II) complex: as an efficient catalyst in oxidation of benzyl alcohol. Res Chem Intermed 44(11):6605–6619CrossRefGoogle Scholar
  204. Markovic D, Deeks C, Nunney T, Radovanovic Z, Radoicic M, Šaponjic Z, Radetic M (2018) Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydr Polym 200:173–182PubMedCrossRefPubMedCentralGoogle Scholar
  205. Mateo D, Albero J, García H (2017) Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy Environ Sci 10(11):2392–2400CrossRefGoogle Scholar
  206. Mei L-P, Feng J-J, Wu L, Zhou J-Y, Chen J-R, Wang A-J (2015) Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium-copper alloyed nanocages. Biosens Bioelectron 74:347–352PubMedCrossRefPubMedCentralGoogle Scholar
  207. Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142-143:431–440PubMedCrossRefPubMedCentralGoogle Scholar
  208. Meng F, Shi W, Sun Y, Zhu X, Wu G, Ruan C, Liu X, Ge D (2013) Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detection range. Biosens Bioelectron 42(1):141–147PubMedCrossRefPubMedCentralGoogle Scholar
  209. Mersian H, Alizadeh M, Hadi N (2018) Synthesis of zirconium doped copper oxide (CuO) nanoparticles by the Pechini route and investigation of their structural and antibacterial properties. Ceram Int 44(16):20399–20408CrossRefGoogle Scholar
  210. Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Geng N, Yao Y, Lv B, Yang Y, You G, Xu Y (2016) Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Bioresour Technol 216:537–544PubMedCrossRefPubMedCentralGoogle Scholar
  211. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356PubMedCrossRefPubMedCentralGoogle Scholar
  212. Mohamadifard M, Nazem H, Mottaghipisheh J (2016) The effects of copper oxide nanoparticles and hydroalcoholic extracts of berberis vulgaris, descurainia sophia and silybum marianum on catalase, glutathione peroxidase, and malondialdehyde concentration in male diabetic rats. J Babol Univ Med Sci 18(3):54–61Google Scholar
  213. Mohd Zabidi NA, Tuan Sulong TS, Ali S (2018) Synthesis and characterization of Cu/ZnO catalyst on carbon nanotubes and Al2O3 supports. Mater Sci Forum 916 MSF:139–143CrossRefGoogle Scholar
  214. Moreira FTC, Rodriguez BAG, Dutra RAF, Sales MGF (2018) Redox probe-free readings of a beta-amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensors Actuators B Chem 264:1–9CrossRefGoogle Scholar
  215. Moshalagae Motlatle A, Kesavan Pillai S, Rudolf Scriba M, Sinha Ray S (2016) Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles. J Nanopart Res 18(10):art. no. 312CrossRefGoogle Scholar
  216. Mu H, Li C, Bai J (2017) The composite catalysts of Cu/CuxO nanoparticles supported on the carbon fibers were prepared for styrene oxidation reaction. Appl Organomet Chem 31(12):3890CrossRefGoogle Scholar
  217. Muthukumar P, Kumar VV, Reddy GRK, Kumar PS, Anthony SP (2018) Fabrication of strong bifunctional electrocatalytically active hybrid Cu-Cu2O nanoparticles in a carbon matrix. Catal Sci Technol 8(5):1414–1422CrossRefGoogle Scholar
  218. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV (2017) Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int J Biol Macromol 95:1064–1071PubMedCrossRefPubMedCentralGoogle Scholar
  219. Muzammil S, Hayat S, Fakhar-e-Alam M, Aslam B, Siddique MH, Nisar MA, Saqalein M, Atif M, Sarwar A, Khurshid A, Amin N, Wang Z (2018) Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci Elite 10(2):352–374CrossRefGoogle Scholar
  220. Naeimi A, Honarmand M, Sedri A (2019) Ultrasonic assisted fabrication of first MoO3/copper complex bio-nanocomposite based on Sesbania sesban plant for green oxidation of alcohols. Ultrason Sonochem 50:331–338PubMedCrossRefPubMedCentralGoogle Scholar
  221. Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J (2017) Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10(2):215–225CrossRefGoogle Scholar
  222. Naghdi S, Sajjadi M, Nasrollahzadeh M, Rhee KY, Sajadi SM, Jaleh B (2018) Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. J Taiwan Inst Chem Eng 86:158–173CrossRefGoogle Scholar
  223. Narasaiah P, Mandal BK, Sarada NC (2017) Biosynthesis of Copper Oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation. IOP Conf Ser Mater Sci Eng 263(2):art. no. 022012Google Scholar
  224. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169(2):59–79CrossRefGoogle Scholar
  225. Nirumand L, Farhadi S, Zabardasti A, Khataee A (2018) Copper ferrite nanoparticles supported on MIL-101/reduced graphene oxide as an efficient and recyclable sonocatalyst. J Taiwan Inst Chem Eng 93:674–685CrossRefGoogle Scholar
  226. Niu S, Han B, Cao W, Zhang S (2009) Sensitive DNA biosensor improved by Luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode. Anal Chim Acta 651(1):42–47PubMedCrossRefPubMedCentralGoogle Scholar
  227. Oh JT, Chowdhury SR, Lee TL, Misra M (2019) Synergetic influence of Au/Cu2O core-shells nanoparticle on optical, photo-electrochemical, and catalytic activities of Au/Cu2O/TiO2 nanocomposite. Dyes Pigments 160:936–943CrossRefGoogle Scholar
  228. Olivo A, Ghedini E, Pascalicchio P, Manzoli M, Cruciani G, Signoretto M (2018) Sustainable carbon dioxide photoreduction by a cooperative effect of reactor design and titania metal promotion. Catalysts 8(1):art. no. 41CrossRefGoogle Scholar
  229. Ong HR, Ramli R, Khan MMR, Yunus RM (2016) The influence of CuO nanoparticle on non-edible rubber seed oil based alkyd resin preparation and its antimicrobial activity. Prog Org Coat 101:245–252CrossRefGoogle Scholar
  230. Oun AA, Rhim J-W (2017) Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 67:45–53CrossRefGoogle Scholar
  231. Padikkaparambil S, Perumbilavil Padi J, Vadery V, Sugunan S, Njarakkattuvalappil Narayanan B (2019) Facile preparation of noble metal-free Cu-doped CeO2 oxidation catalyst suitable for engine exhaust gas treatment. J Environ Eng 145(1):art. no. 04018131CrossRefGoogle Scholar
  232. Palomino RM, Ramírez PJ, Liu Z, Hamlyn R, Waluyo I, Mahapatra M, Orozco I, Hunt A, Simonovis JP, Senanayake SD, Rodriguez JA (2018) Hydrogenation of CO2 on ZnO/Cu(100) and ZnO/Cu(111) catalysts: role of copper structure and metal-oxide interface in methanol synthesis. J Phys Chem B 122(2):794–800PubMedCrossRefPubMedCentralGoogle Scholar
  233. Pandas HM, Fazli M (2018) Preparation and application of La2O3 and CuO nano particles as catalysts for ammonium perchlorate thermal decomposition. Propellants Explos Pyrotech 43(11):1096–1104CrossRefGoogle Scholar
  234. Pang Z, Wei A, Zhao Y, Liu J, Tao L, Xiao Y, Yang Y, Luo D (2018) Direct growth of Cu2ZnSnS4 on three-dimensional porous reduced graphene oxide thin films as counter electrode with high conductivity and excellent catalytic activity for dye-sensitized solar cells. J Mater Sci 53(4):2748–2757CrossRefGoogle Scholar
  235. Pansambal S, Deshmukh K, Savale A, Ghotekar S, Pardeshi O, Jain G, Aher Y, Pore D (2017) Phytosynthesis and biological activities of fluorescent CuO nanoparticles using acanthospermum hispidum L. extract. J Nanostruct 7(3):165–174CrossRefGoogle Scholar
  236. Park J-W, Lee I-C, Shin N-R, Jeon C-M, Kwon O-K, Ko J-W, Kim J-C, Oh S-R, Shin I-S, Ahn K-S (2016a) Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 10(4):445–452PubMedCrossRefPubMedCentralGoogle Scholar
  237. Park JH, Jeong S, Lee EJ, Lee SS, Seok JY, Yang M, Choi Y, Kang B (2016b) Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem Mater 28(12):4151–4159CrossRefGoogle Scholar
  238. Patel D, Kell A, Simard B, Deng J, Xiang B, Lin H-Y, Gruwel M, Tian G (2010) Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31(10):2866–2873PubMedCrossRefPubMedCentralGoogle Scholar
  239. Pathania D, Katwal R, Sharma G (2016) Fabrication, characterization and cytotoxicity of guar gum/copper oxide nanocomposite: efficient removal of organic pollutant. Mater Sci Forum 842:88–102CrossRefGoogle Scholar
  240. Pattanayak P, Pramanik N, Kumar P, Kundu PP (2018) Fabrication of cost-effective non-noble metal supported on conducting polymer composite such as copper/polypyrrole graphene oxide (Cu2O/PPy–GO) as an anode catalyst for methanol oxidation in DMFC. Int J Hydrog Energy 43(25):11505–11519CrossRefGoogle Scholar
  241. Paulose S, Raghavan R, George BK (2017) Copper oxide alumina composite via template assisted sol–gel method for ammonium perchlorate decomposition. J Ind Eng Chem 53:155–163CrossRefGoogle Scholar
  242. Peng P, Huang H, Hu A, Gerlich AP, Zhou YN (2012) Functionalization of silver nanowire surfaces with copper oxide for surface-enhanced Raman spectroscopic bio-sensing. J Mater Chem 22(31):15495–15499CrossRefGoogle Scholar
  243. Peng S, He Y, Er M, Sheng Y, Gu Y, Chen H (2017) Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy: In vivo. Biomater Sci 5(3):475–484PubMedCrossRefPubMedCentralGoogle Scholar
  244. Perlman O, Weitz IS, Azhari H (2015a) Preliminary study of copper oxide nanoparticles acoustic and magnetic properties for medical imaging. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 9412:art. no. 941204Google Scholar
  245. Perlman O, Weitz IS, Azhari H (2015b) Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 60(15):5767–5783PubMedCrossRefPubMedCentralGoogle Scholar
  246. Perlman O, Weitz IS, Sivan SS, Abu-Khalla H, Benguigui M, Shaked Y, Azhari H (2018) Copper oxide loaded PLGA nanospheres towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy. Nanotechnology 29(18):185102PubMedCrossRefPubMedCentralGoogle Scholar
  247. Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87(11):1388–1394PubMedCrossRefPubMedCentralGoogle Scholar
  248. Peszke J, Dulski M, Nowak A, Balin K, Zubko M, Sułowicz S, Nowak B, Piotrowska-Seget Z, Talik E, Wojtyniak M, Mrozek-Wilczkiewicz A, Malarz K, Szade J (2017) Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents. RSC Adv 7(45):28092–28104CrossRefGoogle Scholar
  249. Pham VL, Kim D-G, Ko S-O (2018) Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles. Sci Total Environ 631-632:608–618PubMedCrossRefPubMedCentralGoogle Scholar
  250. Phul R, Kaur C, Farooq U, Ahmad T (2018) Ascorbic acid assisted synthesis, characterization and catalytic application of copper nanoparticles. Mater Sci Eng Int J 2(4):90–94Google Scholar
  251. Pielsticker L, Zegkinoglou I, Divins NJ, Mistry H, Chen Y-T, Kostka A, Boscoboinik JA, Cuenya BR (2018) Segregation phenomena in size-selected Bimetallic CuNi nanoparticle catalysts. J Phys Chem B 122(2):919–926PubMedCrossRefPubMedCentralGoogle Scholar
  252. Pino F, Mayorga-Martinez CC, Merkoçi A (2016) High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochem Commun 71:33–37CrossRefGoogle Scholar
  253. Piplai T, Kumar A, Alappat BJ (2017) Removal of mixture of ZnO and CuO nanoparticles (NPs) from water using activated carbon in batch kinetic studies. Water Sci Technol 75(4):928–943PubMedCrossRefPubMedCentralGoogle Scholar
  254. Pourbeyram S, Bayrami R, Dadkhah H (2017) Green synthesis and characterization of ultrafine copper oxide reduced graphene oxide (CuO/rGO) nanocomposite. Colloids Surf A Physicochem Eng Asp 529:73–79CrossRefGoogle Scholar
  255. Pradhan A, Silva CO, Silva C, Pascoal C, Cássio F (2016) Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders. Aquat Toxicol 180:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  256. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961,  https://doi.org/10.1155/2014/963961CrossRefGoogle Scholar
  257. Prasad R, Jha A and Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0
  258. Pugazhendhi A, Kumar SS, Manikandan M, Saravanan M (2018) Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb Pathog 122:84–89PubMedCrossRefPubMedCentralGoogle Scholar
  259. Qin X, Yin Y, Yu H, Guo W, Pei M (2016) A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens Bioelectron 77:752–758PubMedCrossRefPubMedCentralGoogle Scholar
  260. Qin C, Wang Y, Gong Y, Zhang Z, Cao J (2019) CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. J Alloys Compd 770:972–980CrossRefGoogle Scholar
  261. Qiu X-Y, Liu S-J, Xu D-Z (2018) Yolk-shell structured Cu2O as a high-performance cathode catalyst for the rechargeable Li-O2 batteries. J Mater Sci 53(2):1318–1325CrossRefGoogle Scholar
  262. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49(2):137–152PubMedCrossRefPubMedCentralGoogle Scholar
  263. Rajeshwari S, Pattanathu KSMR, Rajiv P, Salam HA, Venckatesh R (2014a) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta A Mol Biomol Spectrosc 133(2014):178–181Google Scholar
  264. Rajeshwari S, Pattanathu KSMR, Rajiv P, Narendhran S, Venckatesh R (2014b) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 129(2014):255–258Google Scholar
  265. Ramaswamy SVP, Narendhran S, Sivaraj R (2016) Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull Mater Sci 39(2):361–364CrossRefGoogle Scholar
  266. Rani M, Shanker U (2018) Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures. Colloids Surf A Physicochem Eng Asp 553:546–561CrossRefGoogle Scholar
  267. Rao MP, Ponnusamy VK, Wu JJ, Asiri AM, Anandan S (2018) Hierarchical CuO microstructures synthesis for visible light driven photocatalytic degradation of Reactive Black-5 dye. J Environ Chem Eng 6(5):6059–6068CrossRefGoogle Scholar
  268. Reddy GT, Kumar G, Reddy NCG (2018) Water-mediated one-pot three-component synthesis of hydrazinyl-thiazoles catalyzed by copper oxide nanoparticles dispersed on titanium dioxide support: a green catalytic process. Adv Synth Catal 360(5):995–1006CrossRefGoogle Scholar
  269. Rehana D, Mahendiran D, Kumar RS, Rahiman AK (2017) Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother 89:1067–1077PubMedCrossRefPubMedCentralGoogle Scholar
  270. Rezaei M, Azizi K, Amani K (2018) Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous catalytic applications in the synthesis of propargylamines in aqueous medium. Appl Organomet Chem 32(3):art. no. e4120CrossRefGoogle Scholar
  271. Ruey Ong H, Khan MMR, Ramli R, Shein Hong C, Mohd Yunus R (2018) Influence of CuO nanoparticle on palm oil based alkyd resin preparation and its antimicrobial activity. IOP Conf Ser Mater Sci Eng 324(1):art. no. 012027Google Scholar
  272. Safaei M, Taran M (2018) Optimized synthesis, characterization, and antibacterial activity of an alginate–cupric oxide bionanocomposite. J Appl Polym Sci 135(2):art. no. 45682CrossRefGoogle Scholar
  273. Saiadian S, Khorshidi A (2018) Comparison of the catalytic activity of copper nanostructures in friedel-crafts-type condensation reactions. Chem Select 3(1):142–146Google Scholar
  274. Salabat A, Mirhoseini F, Abdoli K (2018) A microemulsion route to fabrication of mono-and bi-metallic Cu/Zn/γ-Al2O3 nanocatalysts for hydrogenation reaction. Scientia Iranica 25(3C):1364–1370Google Scholar
  275. Sangeetha G, Rajeshwari S, Rajendran V (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc 97(2012):1140–1144Google Scholar
  276. Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V (2014) Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C 44:234–239CrossRefGoogle Scholar
  277. Sartin MM, Yu Z, Chen W, He F, Sun Z, Chen Y-X, Huang W (2018) Effect of particle shape and electrolyte cation on CO adsorption to copper oxide nanoparticle electrocatalysts. J Phys Chem C 122(46):26489–26498CrossRefGoogle Scholar
  278. Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B Biol 188:126–134CrossRefGoogle Scholar
  279. Sati P, Shende RC, Ramaprabhu S (2018) An experimental study on thermal conductivity enhancement of DI water-EG based ZnO(CuO)/graphene wrapped carbon nanotubes nanofluids. Thermochim Acta 666:75–81CrossRefGoogle Scholar
  280. Selvarajan S, Suganthi A, Rajarajan M (2018) A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode. Ultrason Sonochem 44:319–330PubMedCrossRefPubMedCentralGoogle Scholar
  281. Shabnam L, Faisal SN, Roy AK, Haque E, Minett AI, Gomes VG (2017) Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food. Food Chem 221:751–759PubMedCrossRefPubMedCentralGoogle Scholar
  282. Shaffiey SR, Shaffiey SF (2016) Silver oxide-copper oxide nanocomposite preparation and antimicrobial activity as a source for the treatment of fish diseases: silver oxide-copper oxide nanocomposite preparation and antimicrobial activity. In: Advancing medicine through nanotechnology and nanomechanics applications, pp 140–151Google Scholar
  283. Shah AP, Sharma AS, Jain S, Shimpi NG (2018) Microwave assisted one pot three component synthesis of propargylamine, tetra substituted propargylamine and pyrrolo[1, 2-: A] quinolines using CuNPs@ZnO-PTh as a heterogeneous catalyst. New J Chem 42(11):8724–8737CrossRefGoogle Scholar
  284. Shahrokhian S, Rezaee S (2018) Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim Acta 259:36–47CrossRefGoogle Scholar
  285. Sharma A, Dutta RK (2018) Se-doped CuO NPs/H2O2/UV as a highly efficient and sustainable photo-Fenton catalytic system for enhanced degradation of 4-bromophenol. J Clean Prod 185:464–475CrossRefGoogle Scholar
  286. Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G (2015) Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Compd 632(2015):321–325CrossRefGoogle Scholar
  287. Sharmila G, Sakthi Pradeep R, Sandiya K, Santhiya S, Muthukumaran C, Jeyanthi J, Manoj Kumar N, Thirumarimurugan M (2018) Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: characterization and its antibacterial application. J Mol Struct 1165:288–292CrossRefGoogle Scholar
  288. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  289. Sheng J, Kang J, Hu Z, Yu Y, Fu X-Z, Sun R, Wong C-P (2018) Octahedral Pd nanocages with porous shells converted from Co(OH)2 nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation. J Mater Chem A 6(32):15789–15796CrossRefGoogle Scholar
  290. Sheta SM, El-Sheikh SM, Abd-Elzaher MM (2018) Simple synthesis of novel copper metal-organic framework nanoparticles: biosensing and biological applications. Dalton Trans 47(14):4847–4855PubMedCrossRefPubMedCentralGoogle Scholar
  291. Shi X, Shen L (2018) Integrin αvβ3 receptor targeting PET/MRI dual-modal imaging probe based on the 64Cu labeled manganese ferrite nanoparticles. J Inorg Biochem 186:257–263PubMedCrossRefPubMedCentralGoogle Scholar
  292. Shi G, Bao Y, Chen B, Xu J (2017a) Phenol hydroxylation over cubic/monoclinic mixed phase CuO nanoparticles prepared by chemical vapor deposition. React Kinet Mech Catal 122(1):289–303CrossRefGoogle Scholar
  293. Shi G, Liu J, Chen B, Bao Y, Xu J (2017b) Phase-controlled growth of cubic phase CuO nanoparticles by chemical vapor deposition. Phys Status Solidi (a) 214(10):art. no. 1700041CrossRefGoogle Scholar
  294. Shlyahovsky B, Katz E, Xiao Y, Pavlov V, Willner I (2005) Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles. Small 1(2):213–216PubMedCrossRefPubMedCentralGoogle Scholar
  295. Shobha G, Shashidhara KS, Mahadimane V, Ananda S (2017) Plant pathovars inhibition from copper based nanoparticles synthesized from leaf extract of flacourtia Montana. J Bionanosci 11(6):514–521CrossRefGoogle Scholar
  296. Shrikant H, Ashwinikumar S, Mayur D, Shreeram J, Kisan K, Manish H (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B: Biointerfaces 95(2012):284–288Google Scholar
  297. Siebman C, Velev OD, Slaveykova VI (2015) Two-dimensional algal collection and assembly by combining AC-dielectrophoresis with fluorescence detection for contaminant-induced oxidative stress sensing. Biosensors 5(2):319–336PubMedPubMedCentralCrossRefGoogle Scholar
  298. Singh RP (2016) Nanobiosensors: potentiality towards bioanalysis. J Bioanal Biomed 8:e143Google Scholar
  299. Singh RP, Choi JW (2010) Bio-nanomaterials for versatile bio-molecules detection technology. Letter to editors. Adv Mater Lett 1:83–84CrossRefGoogle Scholar
  300. Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC (2011) Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mater Lett 2:313–317CrossRefGoogle Scholar
  301. Singh RP, Choi J-W, Tiwari A, Pandey AC (2012) In: Tiwari A, Ramalingam M, Kobayashi H, Turner APF (eds) Utility and potential application of nanomaterials in medicine, in biomedical materials and diagnostic devices. Wiley, HobokenGoogle Scholar
  302. Singh A, Ahmed A, Prasad KN, Khanduja S, Singh SK, Srivastava JK, Gajbhiye NS (2015) Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin antimicrobial. Agents Chemother 59(11):6882–6890CrossRefGoogle Scholar
  303. Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):art. no. 84CrossRefGoogle Scholar
  304. Sivaraj R, Rahman PKSM, Rajiv P, Narendhran S, Venckatesh R (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 129:25–258CrossRefGoogle Scholar
  305. Sivaranjan K, Padmaraj O, Santhanalakshmi J (2018) Synthesis of highly active rGO-supported mono and bi-metallic nanocomposites as catalysts for chemoselective hydrogenation of α,β-unsaturated ketone to alcohol. New J Chem 42(3):1725–1735CrossRefGoogle Scholar
  306. Soleimani E, Moghaddami R (2018) Synthesis, characterization and thermal properties of PMMA/CuO polymeric nanocomposites. J Mater Sci Mater Electron 29(6):4842–4854CrossRefGoogle Scholar
  307. Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H (2013) Synthesis of graphene oxide based cuo nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl Mater Interfaces 5(24):12928–12934PubMedCrossRefPubMedCentralGoogle Scholar
  308. Song J, Wang W, Wang F, Kang Y, Liu S, Lei Z (2017) Encapsulated NdCuOx bimetallic nanoparticles with nitrogen doped carbon as an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 258:1404–1412CrossRefGoogle Scholar
  309. Soori F, Nezamzadeh-Ejhieh A (2018) Synergistic effects of copper oxide-zeolite nanoparticles composite on photocatalytic degradation of 2,6-dimethylphenol aqueous solution. J Mol Liq 255:250–256CrossRefGoogle Scholar
  310. Sriram K, Maheswari PU, Ezhilarasu A, Begum KMMS, Arthanareeswaran G (2017) CuO-loaded hydrophobically modified chitosan as hybrid carrier for curcumin delivery and anticancer activity. Asia Pac J Chem Eng 12(6):858–871CrossRefGoogle Scholar
  311. Su Z, Li J, Zhang D, Ye P, Li H, Yan Y (2019) Novel flexible Fenton-like catalyst: unique CuO nanowires arrays on copper mesh with high efficiency across a wide pH range. Sci Total Environ 647:587–596PubMedCrossRefPubMedCentralGoogle Scholar
  312. Sulaiman GM, Tawfeeq AT, Jaaffer MD (2018) Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol Prog 34(1):218–230PubMedCrossRefPubMedCentralGoogle Scholar
  313. Sun S, Yang Z (2014) Cu2O-templated strategy for synthesis of definable hollow architectures. Chem Commun 50(56):7403–7415CrossRefGoogle Scholar
  314. Sun G, Zhang Y, Kong Q, Zheng X, Yu J, Song X (2015) CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink. Biosens Bioelectron 66:565–571PubMedCrossRefPubMedCentralGoogle Scholar
  315. Sundaramurthy N, Parthiban C (2015) Biosynthesis of copper oxide nanoparticles using pyrus pyrifolia leaf extract and evolve the catalytic activity. Int Res J Eng Technol 2:332–338Google Scholar
  316. Suwannapichat Y, Numpilai T, Chanlek N, Faungnawakij K, Chareonpanich M, Limtrakul J, Witoon T (2018) Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a Cu-ZnO-ZrO2 catalyst admixed with WOx/Al2O3 catalysts: effects of pore size of Al2O3 support and W loading content. Energy Convers Manag 159:20–29CrossRefGoogle Scholar
  317. Swain B, Mishra C, Hong HS, Cho S-S (2016) Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: understanding their chemistry and comparisons of sustainable valorization processes. Environ Res 147:249–258PubMedCrossRefPubMedCentralGoogle Scholar
  318. Syame SM, Mohamed WS, Mahmoud RK, Omara ST (2017) Synthesis of copper-chitosan nanocomposites and their applications in treatment of local pathogenic isolates bacteria. Orient J Chem 33(6):2959–2969CrossRefGoogle Scholar
  319. Tabakova T, Ivanov I, Karakirova Y, Karashanova D, Venezia AM, Petrova P, Avdeev G, Kolentsova E, Ivanov K (2018) Promotional effect of gold on the WGS activity of alumina-supported copper-manganese mixed oxides. Catalysts 8(11):art. no. 563CrossRefGoogle Scholar
  320. Tabatabaei N, Dashtian K, Ghaedi M, Sabzehmeidani MM, Ameri E (2018) Novel visible light-driven Cu-based MOFs/Ag2O composite photocatalysts with enhanced photocatalytic activity toward the degradation of orange G: their photocatalytic mechanism and optimization study. New J Chem 42(12):9720–9734CrossRefGoogle Scholar
  321. Tada S, Katagiri A, Kiyota K, Honma T, Kamei H, Nariyuki A, Uchida S, Satokawa S (2018) Cu species incorporated into amorphous ZrO2 with high activity and selectivity in CO2-to-methanol hydrogenation. J Phys Chem C 122(10):5430–5442CrossRefGoogle Scholar
  322. Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2018) Alumina/graphene/Cu hybrids as highly selective sensor for simultaneous determination of epinephrine, acetaminophen and tryptophan in human urine. J Electroanal Chem 823:184–192CrossRefGoogle Scholar
  323. Tan L, Wan J, Guo W, Ou C, Liu T, Fu C, Zhang Q, Ren X, Liang X-J, Ren J, Li L, Meng X (2018) Renal-clearable quaternary chalcogenide nanocrystal for photoacoustic/magnetic resonance imaging guided tumor photothermal therapy. Biomaterials 159:108–118PubMedCrossRefPubMedCentralGoogle Scholar
  324. Tang Y, Liu Q, Yang X, Wei M, Zhang M (2017a) Copper oxide coated gold Nanorods like a film: a facile route to nanocomposites for electrochemical application. J Electroanal Chem 806:8–14CrossRefGoogle Scholar
  325. Tang H, Liu X, Xiao M, Huang Z, Tan X (2017b) Effect of particle size and morphology on surface thermodynamics and photocatalytic thermodynamics of nano-Cu2O. J Environ Chem Eng 5(5):4447–4453CrossRefGoogle Scholar
  326. Tavella F, Ampelli C, Frusteri L, Frusteri F, Perathoner S, Centi G (2018) Development of photoanodes for photoelectrocatalytic solar cells based on copper-based nanoparticles on titania thin films of vertically aligned nanotubes. Catal Today 304:190–198CrossRefGoogle Scholar
  327. Thampi VVA, Thanka Rajan S, Anupriya K, Subramanian B (2015) Functionalization of fabrics with PANI/CuO nanoparticles by precipitation route for anti-bacterial applications. J Nanopart Res 17(1):12CrossRefGoogle Scholar
  328. Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, Li R, Su Q, Han Y, Liu X (2013) Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J Am Chem Soc 135(23):8571–8577PubMedCrossRefPubMedCentralGoogle Scholar
  329. Tian L, Qi J, Qian K, Oderinde O, Liu Q, Yao C, Song W, Wang Y (2018) Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J Electroanal Chem 812:1–9CrossRefGoogle Scholar
  330. Tou A, Kim H-H, Einaga H, Teramoto Y, Ogata A (2019) Ozone-assisted catalysis of CO: in situ Fourier transform IR evidence of the cooperative effect of a bimetallic Ag-Pd catalyst. Chem Eng J 355:380–389CrossRefGoogle Scholar
  331. Tran CD, Makuvaza J, Munson E, Bennett B (2017) Biocompatible copper oxide nanoparticle composites from cellulose and chitosan: facile synthesis, unique structure, and antimicrobial activity. ACS Appl Mater Interfaces 9(49):42503–42515PubMedCrossRefPubMedCentralGoogle Scholar
  332. Tseng W-C, Hsu K-C, Shiea CS, Huang Y-L (2015) Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: a critical review. Anal Chim Acta 884:1–18PubMedCrossRefPubMedCentralGoogle Scholar
  333. Udayabhanu PC, Nethravathi MA, Pavan Kumar D, Suresh K, Lingaraju H, Rajanaika NH, Sharma SC (2015) Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Mater Sci Semicond Process 33:81–88CrossRefGoogle Scholar
  334. Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A (2018) Progress of nanocomposite membranes for water treatment. Membranes 8(2):art. no. 18CrossRefGoogle Scholar
  335. Uzunoglu A, Stanciu LA (2016) Novel CeO2-CuO-decorated enzymatic lactate biosensors operating in low oxygen environments. Anal Chim Acta 909:121–128PubMedCrossRefPubMedCentralGoogle Scholar
  336. Vaidehi D, Bhuvaneshwari V, Bharathi D, Sheetal BP (2018) Antibacterial and photocatalytic activity of copper oxide nanoparticles synthesized using Solanum lycopersicum leaf extract. Mater Res Express 5(8):art. no. 085403CrossRefGoogle Scholar
  337. Vaseghi Z, Tavakoli O, Nematollahzadeh A (2018) Rapid biosynthesis of novel Cu/Cr/Ni trimetallic oxide nanoparticles with antimicrobial activity. J Environ Chem Eng 6(2):1898–1911CrossRefGoogle Scholar
  338. Vats T, Gogoi R, Gaur P, Sharma A, Ghosh S, Siril PF (2017) Pristine Graphene-Copper (II) Oxide Nanocatalyst: a novel and green approach in CuAAC reactions. ACS Sustain Chem Eng 5(9):7632–7641CrossRefGoogle Scholar
  339. Vellora V, Padil T, Cernik M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889–898Google Scholar
  340. Velusamy V, Palanisamy S, Kokulnathan T, Chen S-W, Yang TCK, Banks CE, Pramanik SK (2018) Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. J Colloid Interface Sci 530:37–45PubMedCrossRefPubMedCentralGoogle Scholar
  341. Venkatesha NJ, Ramesh S (2018) Citric acid-assisted synthesis of nanoparticle copper catalyst supported on an oxide system for the reduction of furfural to furfuryl alcohol in the vapor phase. Ind Eng Chem Res 57(5):1506–1515CrossRefGoogle Scholar
  342. Vimala Devi L, Sellaiyan S, Selvalakshmi T, Zhang HJ, Uedono A, Sivaji K, Sankar S (2017) Synthesis, defect characterization and photocatalytic degradation efficiency of Tb doped CuO nanoparticles. Adv Powder Technol 28(11):3026–3038CrossRefGoogle Scholar
  343. Wan S, Ding W, Wang Y, Wu J, Gu Y, He F (2018) Manganese oxide nanoparticles impregnated graphene oxide aggregates for cadmium and copper remediation. Chem Eng J 350:1135–1143CrossRefGoogle Scholar
  344. Wang J, Yuan R, Chai Y, Li W, Fu P, Min L (2010) Using flowerlike polymer-copper nanostructure composite and novel organic-inorganic hybrid material to construct an amperometric biosensor for hydrogen peroxide. Colloids Surf B: Biointerfaces 75(2):425–431PubMedCrossRefPubMedCentralGoogle Scholar
  345. Wang X, Chen L, Su X, Ai S (2013) Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup J. Biosens Bioelectron 47:171–177PubMedCrossRefPubMedCentralGoogle Scholar
  346. Wang Z, Liu N, Ma Z (2014) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron 53:324–329PubMedCrossRefPubMedCentralGoogle Scholar
  347. Wang H, DeLisio JB, Jian G, Zhou W, Zachariah MR (2015) Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles. Combust Flame 162(7):2823–2829CrossRefGoogle Scholar
  348. Wang S, Cazelles R, Liao W-C, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I (2017) Mimicking Horseradish Peroxidase and NADH Peroxidase by Heterogeneous Cu2+−modified graphene oxide nanoparticles. Nano Lett 17(3):2043–2048PubMedCrossRefPubMedCentralGoogle Scholar
  349. Wang M, Lin Z, Liu Q, Jiang S, Liu H, Su X (2018a) DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection. Anal Chim Acta 1012:66–73PubMedCrossRefPubMedCentralGoogle Scholar
  350. Wang Y, Zhao G, Li X, Liu L, Cao W, Wei Q (2018b) Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1. Biosens Bioelectron 101:290–296PubMedCrossRefPubMedCentralGoogle Scholar
  351. Wang Z, Zhang J, Wang H, Hai J, Wang B (2018c) Se atom-induced synthesis of concave spherical Fe3O4@Cu2O nanocrystals for highly efficient MRI–SERS imaging-guided NIR photothermal therapy. Part Part Syst Charact 35(11):art. no. 1800197CrossRefGoogle Scholar
  352. Wang Y, Yang D, Li S, Zhang L, Zheng G, Guo L (2019a) Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chem Eng J 357:258–268CrossRefGoogle Scholar
  353. Wang S, Yan L, Zhao Y, Ma Y, Wu G, Wu J, Zeng S (2019b) Honeycomb porous carbon frameworks from wheat flour as supports for CuxO-CeO2 monolithic catalysts. Appl Surf Sci 464:294–300CrossRefGoogle Scholar
  354. Wang L, Gopinath SCB, Anbu P, Rajapaksha RDAA, Velusamy P, Pandian K, Arshad MKM, Lakshmipriya T, Lee C-G (2019c) Photovoltaic and antimicrobial potentials of electrodeposited copper nanoparticle. Biochem Eng J 142:97–104CrossRefGoogle Scholar
  355. Wen G, Ju H (2015) Ultrasensitive photoelectrochemical immunoassay through tag induced exciton trapping. Talanta 134:496–500PubMedCrossRefPubMedCentralGoogle Scholar
  356. Won Y-H, Stanciu LA (2012) Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing. Sensors (Switzerland) 12(10):13019–13033CrossRefGoogle Scholar
  357. Wu Z-C, Li W-P, Luo C-H, Su C-H, Yeh C-S (2015) Rattle-type Fe3O4@CuS developed to conduct magnetically guided photoinduced hyperthermia at first and second NIR biological windows. Adv Funct Mater 25(41):6527–6537CrossRefGoogle Scholar
  358. Wu X, Xing Y, Pierce D, Zhao JX (2017) One-pot synthesis of reduced graphene oxide/metal (oxide) composites. ACS Appl Mater Interfaces 9(43):37962–37971PubMedCrossRefPubMedCentralGoogle Scholar
  359. Wu R, Ma Y, Pan J, Lee S-H, Liu J, Zhu H, Gu R, Shea KJ, Pan G (2018a) Efficient capture, rapid killing and ultrasensitive detection of bacteria by a nano-decorated multi-functional electrode sensor. Biosens Bioelectron 101:52–59PubMedCrossRefPubMedCentralGoogle Scholar
  360. Wu Y, Song M, Wang Q, Wang T, Wang X (2018b) A highly selective conversion of toxic nitrobenzene to nontoxic aminobenzene by Cu2O/Bi/Bi2MoO6. Dalton Trans 47(26):8794–8800PubMedCrossRefPubMedCentralGoogle Scholar
  361. Xie Q, Weng X, Lu L, Lin Z, Xu X, Fu C (2016) A sensitive fluorescent sensor for quantification of alpha-fetoprotein based on immunosorbent assays and click chemistry. Biosens Bioelectron 77:46–50PubMedCrossRefPubMedCentralGoogle Scholar
  362. Xie H, Wang J, Ithisuphalap K, Wu G, Li Q (2017) Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels. J Energy Chem 26(6):1039–1049CrossRefGoogle Scholar
  363. Xie Y, Yu Y, Lu L, Ma X, Gong L, Huang X, Liu G, Yu Y (2018a) CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J Electroanal Chem 812:82–89CrossRefGoogle Scholar
  364. Xie H, Chen S, Ma F, Liang J, Miao Z, Wang T, Wang H-L, Huang Y, Li Q (2018b) Boosting Tunable Syngas formation via electrochemical CO2 reduction on Cu/In2O3 core/shell nanoparticles. ACS Appl Mater Interfaces 10(43):36996–37004PubMedCrossRefPubMedCentralGoogle Scholar
  365. Xu D, Zhu C, Meng X, Chen Z, Li Y, Zhang D, Zhu S (2018) Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose. Sensors Actuators B Chem 265:435–442CrossRefGoogle Scholar
  366. Xue Y, Yu G, Shan Z, Li Z (2018) Phyto-mediated synthesized multifunctional Zn/CuO NPs hybrid nanoparticles for enhanced activity for kidney cancer therapy: a complete physical and biological analysis. J Photochem Photobiol B Biol 186:131–136CrossRefGoogle Scholar
  367. Yallappa S, Manjanna J, Sindhe MA et al (2013) Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol Biomol Spectrosc 110:108–115PubMedCrossRefPubMedCentralGoogle Scholar
  368. Yan X, Chen Y, Deng S, Yang Y, Huang Z, Ge C, Xu L, Sun D, Fu G, Tang Y (2017) In situ integration of Ultrathin PtCu nanowires with reduced graphene oxide nanosheets for efficient electrocatalytic oxygen reduction. Chem Eur J 23(66):16871–16876PubMedCrossRefPubMedCentralGoogle Scholar
  369. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ, Cai W, Steeber DA, Gong S (2011) CRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160PubMedPubMedCentralCrossRefGoogle Scholar
  370. Yang B-X, Luo Y, Ye L-P (2018a) CO oxidation on inverse Ce6O12/Cu (111) catalyst: role of copper–ceria interactions. J Mol Model 24(1):20CrossRefGoogle Scholar
  371. Yang Y, Yan Q, Liu Q, Li Y, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y (2018b) An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens Bioelectron 99:450–457PubMedCrossRefPubMedCentralGoogle Scholar
  372. Yang Z, Hao X, Chen S, Ma Z, Wang W, Wang C, Yue L, Sun H, Shao Q, Murugadoss V, Guo Z (2019) Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. J Colloid Interface Sci 533:13–23PubMedCrossRefPubMedCentralGoogle Scholar
  373. Ye H-Q, Mao D-S, Yuen MMF, Fu X-Z, Sun R, Wong C-P (2017) PdCu alloy nanoparticles supported on reduced graphene oxide as active catalyst for electroless copper plating. 18th International Conference on Electronic Packaging Technology, ICEPT 2017, art. no. 8046575, pp 835–838Google Scholar
  374. Yi H, Yang Z, Tang X, Zhao S, Gao F, Wang J, Huang Y, Ma Y, Chu C (2018) Novel synthesis of MeOx (Ni, Cu, La)@Nano-Co3O4 from combination of complexation and impregnation in ultrasonic intervention for low temperature oxidation of toluene under microwave radiation. Ultrason Sonochem 40:543–551PubMedCrossRefPubMedCentralGoogle Scholar
  375. Yin J, Guo W, Qin X, Pei M, Wang L, Ding F (2016) A regular signal attenuation electrochemical aptasensor for highly sensitive detection of streptomycin. New J Chem 40(11):9711–9718CrossRefGoogle Scholar
  376. Yisilamu G, Maimaiti H, Awati A, Zhang D, Sun F, Xu B (2018) Preparation of cuprous oxide nanoparticles coated with aminated cellulose for the photocatalytic reduction of carbon dioxide to methanol. Energ Technol 6(6):1168–1177CrossRefGoogle Scholar
  377. Yousaf AB, Alsaydeh SAM, Zavahir FS, Kasak P, Zaidi SJ (2018) Ultra-low Pt-decorated NiCu bimetallic alloys nanoparticles supported on reduced graphene oxide for electro-oxidation of methanol. MRS Commun 8(3):1050–1057CrossRefGoogle Scholar
  378. Yuan C, Varfolomeev MA, Emelianov DA, Suwaid MA, Khachatrian AA, Starshinova VL, Vakhitov IR, Al-Muntaser AA (2018) Copper stearate as a catalyst for improving the oxidation performance of heavy oil in in-situ combustion process. Appl Catal A Gen 564:79–89CrossRefGoogle Scholar
  379. Yugandhar P, Vasavi T, Rao YJ, Devi PUM, Narasimha G, Savithramma N (2018) Cost effective, green syntheses of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp. Characterization and evaluation of antiviral activity. J Clust Sci 29(4):743–755CrossRefGoogle Scholar
  380. Zanganeh N, Guda VK, Toghiani H, Keith JM (2018) Sinter-resistant and highly active Sub-5 nm bimetallic Au-Cu nanoparticle catalysts encapsulated in silica for high-temperature carbon monoxide oxidation. ACS Appl Mater Interfaces 10(5):4776–4785PubMedCrossRefPubMedCentralGoogle Scholar
  381. Zare Khafri H, Ghaedi M, Asfaram A, Javadian H, Safarpoor M (2018) Synthesis of CuS and ZnO/Zn(OH)2 nanoparticles and their evaluation for in vitro antibacterial and antifungal activities. Appl Organomet Chem 32(7):art. no. e4398CrossRefGoogle Scholar
  382. Zedan AF, Mohamed AT, El-Shall MS, Alqaradawi SY, Aljaber AS (2018) Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation. RSC Adv 8(35):19499–19511CrossRefGoogle Scholar
  383. Zhan G (2019) Synthetic architecture of integrated nanocatalysts with controlled spatial distribution of metal nanoparticles. Chem Eng J 355:320–334CrossRefGoogle Scholar
  384. Zhan G, Zeng HC (2017) A synthetic protocol for preparation of binary multi-shelled hollow spheres and their enhanced oxidation application. Chem Mater 29(23):10104–10112CrossRefGoogle Scholar
  385. Zhang X, Wang G, Zhang W, Wei Y, Fang B (2009) Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioelectron 24(11):3395–3398PubMedCrossRefPubMedCentralGoogle Scholar
  386. Zhang S, Lu Z, Gu L, Cai L, Cao X (2013) Deterministic growth of AgTCNQ and CuTCNQ nanowires on large-area reduced graphene oxide films for flexible optoelectronics. Nanotechnology 24(46):art. no. 465202CrossRefGoogle Scholar
  387. Zhang Y, Zhang X-F, He X-L, Huang H-D, Le L-J, Lin S (2017a) Preparation and electrocatalytic property of Pt/{GN/CuPW11}n composite films toward methanol oxidation. Wuji Cailiao Xuebao/J Inorg Mater 32(10):1075–1082Google Scholar
  388. Zhang D, Trzcinski AP, Oh H-S, Chew E, Tan SK, Ng WJ, Liu Y (2017b) Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors. J Environ Sci Health A Tox Hazard Subst Environ Eng 52(6):507–514PubMedCrossRefPubMedCentralGoogle Scholar
  389. Zhang Z-Z, Xu J-J, Shi Z-J, Cheng Y-F, Ji Z-Q, Deng R, Jin R-C (2017c) Combined impacts of nanoparticles on anammox granules and the roles of EDTA and S2− in attenuation. J Hazard Mater 334:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  390. Zhang L, Cao H, Pen Q, Wu L, Hou G, Tang Y, Zheng G (2018a) Embedded CuO nanoparticles@TiO2-nanotube arrays for photoelectrocatalytic reduction of CO2 to methanol. Electrochim Acta 283:1507–1513CrossRefGoogle Scholar
  391. Zhang H, Ji F, Zhang Y, Pan Z, Lai B (2018b) Catalytic ozonation of N,N-dimethylacetamide (DMAC) in aqueous solution using nanoscaled magnetic CuFe2O4. Sep Purif Technol 193:368–377CrossRefGoogle Scholar
  392. Zhang S, Zhao D, Hou C, Liang C, Li H (2018c) Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles as efficient catalyst for 4-nitrophenol reduction. J Nanopart Res 20(6):art. no. 161CrossRefGoogle Scholar
  393. Zhang J, Yang Z, Sun L, Yu F, Li Y, Cheng X, Liu X, Zhao X (2018d) Preparation of bilayer graphene utilizing CuO as nucleation sites by CVD method. J Mater Sci Mater Electron 29(6):4495–4502CrossRefGoogle Scholar
  394. Zhang P, Hou D, O'Connor D, Li X, Pehkonen S, Varma RS, Wang X (2018e) Green and size-specific synthesis of stable Fe-Cu oxides as earth-abundant adsorbents for malachite green removal. ACS Sustain Chem Eng 6(7):9229–9236CrossRefGoogle Scholar
  395. Zhang X, Li J, Wang X, Wang Y, Hang R, Huang X, Tang B, Chu PK (2018f) Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater Sci Eng C 82:110–120CrossRefGoogle Scholar
  396. Zhao J, Zheng T, Gao J, Guo S, Zhou X, Xu W (2017) A sub-picomolar assay for protein by using cubic Cu2O nanocages loaded with Au nanoparticles as robust redox probes and efficient non-enzymatic electrocatalysts. Analyst 142(5):794–799PubMedCrossRefPubMedCentralGoogle Scholar
  397. Zhen SJ, Wang TT, Liu YX, Wu ZL, Zou HY, Huang CZ (2018) Reduced graphene oxide coated Cu2−xSe nanoparticles for targeted chemo-photothermal therapy. J Photochem Photobiol B Biol 180:9–16CrossRefGoogle Scholar
  398. Zhou S, Wei D, Shi H, Feng X, Xue K, Zhang F, Song W (2013) Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application. Talanta 107:349–355PubMedCrossRefPubMedCentralGoogle Scholar
  399. Zhou C, Xu L, Song J, Xing R, Xu S, Liu D, Song H (2014) Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep 4:art. no. 7382CrossRefGoogle Scholar
  400. Zhou R, Zhao J, Shen N, Ma T, Su Y, Ren H (2018) Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles. Chemosphere 197:670–679PubMedCrossRefPubMedCentralGoogle Scholar
  401. Zolata H, Afarideh H, Abbasi-Davani F (2014) Radio-immunoconjugated, Dox-loaded, surface-modified superparamagnetic iron oxide nanoparticles (SPIONs) as a bioprobe for breast cancer tumor theranostics. J Radioanal Nucl Chem 301(2):451–460CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ravindra Pratap Singh
    • 1
  1. 1.Department of BiotechnologyIndira Gandhi National Tribal University (Central University)Amarkantak, AnuppurIndia

Personalised recommendations