Advertisement

Biogenic Material With Iron Nanoparticles for As(V) Removal

  • G. García-Rosales
  • L. C. Longoria-Gándara
  • P. Avila-Pérez
  • D. O. Flores-Cruz
  • C. López-Reyes
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

In this work, the chemical conditioning of the pineapple peel and its subsequent pyrolysis process to obtain a carbonaceous matrix fitted with iron nanoparticles are presented. The material was characterized by different analytical techniques, and the sorption capacity of As(V) in aqueous phase was evaluated. The pineapple peel (PP) was analyzed by neutron activation analysis (NAA), showing the presence of elements such as Al, Br, Ce, Co, Cr, Cs, Eu, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, and Zn. These elements are involved in the sorption process of As(V), forming active sites on the surface. By means of the chemical conditioning of the pineapple peel and after a pyrolysis process of 650 °C, an amorphous carbonaceous material (C-180) was obtained with spherical nanoparticles distributed homogeneously on the surface with an average diameter of 39 nm, specific area of 167 m2/g with 7 ± 1 sites/nm2, and isoelectric point of pHi = 11. The maximum percent removal was 77.39% with a maximum retention capacity of 5.73 mg of As/g and an initial concentration of 30 mg/L. The isotherm in relation with the concentration was adjusted to the Freundlich model, indicating that the sorption is carried out through a multilayer chemisorption process, in specific active sites and in a heterogeneous medium.

Keywords

Iron nanoparticles Arsenic Pineapple (Ananas comosusNeutron activation analysis X-Ray photoelectron spectroscopy 

References

  1. Alhassan E, Agbemava SE, Adoo NA, Agbodemegbe VY, Bansah CY, Della R, Appiah GI, Kombat EO, Nyarko BJB (2011) Determination of trace elements in Ghanaian Shea butter and shea nut by neutron activation analysis (NAA). Res J Appl Sci Eng Technol 3(1):22–25Google Scholar
  2. Altundoğan S, Altundoğan H, Tümen S, Bildik F (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag 22:357–363CrossRefGoogle Scholar
  3. Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plant water Hyacint (Eichhornia crassipes) and lesser duckweed (Lemma minor). Bioresour Technol 99:8436–8440CrossRefGoogle Scholar
  4. Araújo R, Meira Castro AC, Fiúza A (2015) The use of nanoparticles in soil and water remediation processes. Mater Today Proc 2:315–320CrossRefGoogle Scholar
  5. Bang S, Korfiatis GP, Meng X (2005) Removal of arsenic from water by zero-valent iron. J Hazard Mater 121:61–67CrossRefGoogle Scholar
  6. Barr TL (1991) Recent advances in X-ray photoelectron spectroscopy studies of oxides. J Vac Sci Technol A 9(3):1793–1805CrossRefGoogle Scholar
  7. Baskan B, Pala MA (2010) A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 254:42–48CrossRefGoogle Scholar
  8. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317CrossRefGoogle Scholar
  9. Bilal Shakoor M, Khan Niazi N, Bibi I, Shahid M, Sharif F, Bashir S, Shaheen SM, Wang H, Tsang DCW, Sik Ok Y, Rinklebe J (2018) Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci Total Environ 645:1444–1455CrossRefGoogle Scholar
  10. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465CrossRefGoogle Scholar
  11. Bundschuh J, Litter M, Ciminelli VST, Morgada ME, Cornejo L, Garrido Hoyos S, Hoinkis J, Alarcón-Herrera MT, Armienta MA, Bhattacharya P (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America -a critical analysis. Water Res 44:5828–5845CrossRefGoogle Scholar
  12. Chakrabarti D, Singh SK, Rashid MH, Mahmudur Rahman M (2018) Arsenic: occurrence in groundwater. Reference Module in Earth Systems and Environmental Sciences.  https://doi.org/10.1016/B978-0-12-409548-9.10634-7Google Scholar
  13. Chen YZ, Yang CT, Ching CB, Xu R (2008) Inmobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysists. Langmuir 24:8877–8884CrossRefGoogle Scholar
  14. Chena S, Wu D (2018) Adapting ecological risk valuation for natural resource damage assessment in water pollution. Environ Res 164:85–92CrossRefGoogle Scholar
  15. Chenhall BE, Ellis J, Crisp PT, Payling R, Tandon RK, Baker RS (1985) Application of X-ray photoelectron spectroscopy to the analysis of stainless-steel welding aerosols. Appl Surf Sci 20:527–537CrossRefGoogle Scholar
  16. Choong TSY, Chuaha TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166CrossRefGoogle Scholar
  17. D’Eeckenbrugge GC, Leal F (2003) Chapter 2: Morphology, anatomy and taxonomy. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple. Botany, production and uses, 1st edn. CABI Publishing, Oxon, UK, pp 13–32Google Scholar
  18. Deng JH, Zhang XR, Zeng GM, Gong JL, Niu QY, Liang J (2013) Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic grapheme oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200CrossRefGoogle Scholar
  19. Domènech X, Peral J (2006) Química Ambiental de Sistemas Terrestres. Reverté, España, pp 1–34Google Scholar
  20. Gul Kazi T, Dev Brahman K, Ahmed Baig J, Imran Afridi H (2018) A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater. J Hazard Mater 357:159–167CrossRefGoogle Scholar
  21. Gutiérrez F, Rojas Bourillón A, Dormond H, Poore M, Wing Ching-Jones R (2003) Características nutricionales y fermentativas de mezclas de desechos de piña y avícolas. Agron Costarric 27:79–89Google Scholar
  22. Gutiérrez-Muñiz OE, García-Rosales G, Ordoñez-Regil E, Olguin MT, Cabral-Prieto A (2013) Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As (V) from water. J Environ Manag 114:1–7CrossRefGoogle Scholar
  23. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  24. Huang Q, Liu Q, Lin L, Li FJ, Han Y, Songa ZG (2018) Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles. Ecotoxicol Environ Saf 159:261–271CrossRefGoogle Scholar
  25. HYPERMET-PC (2008). Versión 5.01. Copyright 1995–1998. Institute of Isotopes. H-1525, Budapest, HungaryGoogle Scholar
  26. International Agency for Research on Cancer (IARC) (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1Google Scholar
  27. Ishimaru K, Hata T, Bronsveld P, Meier D, Imamura Y (2007) Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J Mater Sci 42:122–129CrossRefGoogle Scholar
  28. Kabata-Pendias A (2011) Introduction, Chapters 6, 8, 9, 11–13, 17, 22. Trace Elements in Soils and Plants. Taylor and Francis Group, LLC. XXVII, 130, 148–149, 155–158, 172, 187–190, 207–211, 220–223, 231–234, 281–287, 396–397Google Scholar
  29. Kamal N, Koju X, Song Q, Wang Z, Hu C (2018) Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms. Environ Pollut 240:255–266CrossRefGoogle Scholar
  30. Khan ST, Malik A (2018) Engineered nanomaterials for water decontamination and purification: from lab to products. J Hazard Mater.  https://doi.org/10.1016/j.jhazmat.2018.09.091CrossRefGoogle Scholar
  31. Kumar Mandal B, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  32. Leusa K, Folens K, Ricci Nicomel N, Pereza JPH, Filippousi M, Meledina M, Dîrtu MM, Turner S, Van Tendeloo G, Garciad Y, Du Laing G, Van Der Voort P (2018) Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. J Hazard Mater 353:312–319CrossRefGoogle Scholar
  33. Lim H, Liu Y, Yong Kim H, Ick Sona D (2018) Facile synthesis and characterization of carbon quantum dots and photovoltaic applications. Thin Solid Films 630:672–677CrossRefGoogle Scholar
  34. Litter MI, Morgada ME, Bundschuh J (2010) Possible treatments for arsenic removal in Latin America waters for human consumption. Environ Pollut 158:1105–1118CrossRefGoogle Scholar
  35. Liu Z, Zhang FS (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCB’s. Bioresour Technol 101:2562–2564CrossRefGoogle Scholar
  36. Liu Z, Zhang FS, Sasai R (2010) Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chem Eng J 160:57–62CrossRefGoogle Scholar
  37. López-Téllez G, Barrera-Díaz CE, Balderas-Hernández P, Roa-Morales G, Bilyeu B (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173:480–485CrossRefGoogle Scholar
  38. Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164CrossRefGoogle Scholar
  39. Malitesta C, Razzini G, Peraldo Bicelli L, Sabbatini L (1987) Photoelectrochemical behaviour and XPS characterization of (Ti, Al, V)O2 film obtained by non-conventional anodic oxidation of a commercial Ti-Al-V alloy. Int J Hydrog Energy 12(4):219–225CrossRefGoogle Scholar
  40. Martínez-Villafañe JF, Montero-Ocampo C, García-Lara AM (2009) Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from groundwater. J Hazard Mater 172:1617–1622CrossRefGoogle Scholar
  41. Max Lu GQ (2018) Nanomaterials for clean air, energy and water. Prog Nat Sci Mater Int 28:97–98CrossRefGoogle Scholar
  42. Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents-a critical review. J Hazard Mater 142:1–53CrossRefGoogle Scholar
  43. Mostafa MG, Chen YH, Jean JS, Liu CC, Lee YC (2011) Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J Hazard Mater 187:89–95CrossRefGoogle Scholar
  44. Onorevoli B, Pereira da Silva Maciel G, Machado ME, Corbelini V, Caramão EB, Jacques RA (2018) Characterization of feedstock and biochar from energetic tobacco seed waste pyrolysis and potential application of biochar as an adsorbent. J Environ Chem Eng 6:1279–1287CrossRefGoogle Scholar
  45. Poole CP Jr, Owens FJ (2007) Capítulo 4 Propiedades de las Nanopartículas Individuales. In: Editorial Reverté (ed) Introducción a la Nanotecnología, 1st edn, pp 79–111Google Scholar
  46. Prathna TC, Kumar Sharma S, Kennedy M (2018) Nanoparticles in household level water treatment: an overview. Sep Purif Technol 199:260–270CrossRefGoogle Scholar
  47. Ramos MAV, Yan W, Li X-QN, Koel BE, Zhang W (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J Phys Chem C 113:14591–14594CrossRefGoogle Scholar
  48. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2011) Servicio de Información Agroalimentaria y Pesquera. Estacionalidad de Piña:1–6Google Scholar
  49. Sen M, Manna A, Pal P (2010) Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. J Membr Sci 354:108–113CrossRefGoogle Scholar
  50. Singh B, Fang Y, Cowie BCC, Thomsen L (2014) NEXAFS and XPS characterization of carbon functional groups of fresh and aged biochars. Org Geochem 77:1–10CrossRefGoogle Scholar
  51. Strathman H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288CrossRefGoogle Scholar
  52. Sua H, Yea Z, Hmidi N (2017) High-performance iron oxide-graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf A Physicochem Eng Aspects 522:161–172CrossRefGoogle Scholar
  53. Taherymoosavi S, Verheye V, Munro P, Joseph S, Reynolds A (2017) Characterization of organic compounds in biochars derived from municipal solid waste. Waste Manag 67:131–142CrossRefGoogle Scholar
  54. Tamayo A et al (2018) Further characterization of the surface properties of the SiC particles through complementarity of XPS and IGC-ID techniques. Bol Soc Esp Cerám Vidr.  https://doi.org/10.1016/j.bsecv.2018.04.003CrossRefGoogle Scholar
  55. Technical Fact Sheet: Final Rule for arsenic in drinking water (2001) Unites States Environmental Protection Agency. EPA 815-F-00-016. Office of Water. January. https://nepis.epa.gov/Exe/ZyPdf.cgi?Dockey=20001XXE.txt
  56. Xua H, Wanga X, Burchiel SW (2018) Toxicity of environmentally-relevant concentrations of arsenic on developing T lymphocyte. Environ Toxicol Pharmacol 62:107–113CrossRefGoogle Scholar
  57. Zhang M, Ji J, Huang K, Hou X, Zheng C (2018) Facile electrochemical synthesis of nano iron porous coordination polymer using scrap iron for simultaneous and cost-effective removal of organic and inorganic arsenic. Chin Chem Lett 29:456–460CrossRefGoogle Scholar
  58. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. García-Rosales
    • 1
  • L. C. Longoria-Gándara
    • 2
  • P. Avila-Pérez
    • 3
  • D. O. Flores-Cruz
    • 3
  • C. López-Reyes
    • 4
  1. 1.Instituto Tecnológico de Toluca, Departamento de posgradoMetepecMexico
  2. 2.Division for Latin America/Department of Technical Cooperation International Atomic Energy AgencyViennaAustria
  3. 3.Instituto Tecnológico de Toluca, Departamento de PosgradoMetepecMéxico
  4. 4.Instituto Nacional de Investigaciones NuclearesOcoyoacacMexico

Personalised recommendations