Polymyxin Susceptibility Testing and Breakpoint Setting

  • John TurnidgeEmail author
  • Katherine Sei
  • Johan Mouton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1145)


Susceptibility testing of polymyxins has been subject to intensive review and revision in recent years. A joint working group was established by the Clinical and Laboratory Standards Institute and the European Committee on Antimicrobial Susceptibility Testing to establish a reference method. Issues examined included the effects of divalent cations, binding to laboratory materials, and addition of polysorbate 80. The working group recommended the use of broth microdilution without the addition of polysorbate 80 as the reference method. Published studies have shown that other testing methods, including agar dilution, disk diffusion and gradient diffusion, have unacceptably high levels of very major errors compared to the reference method, and are not recommended for routine laboratory use. Most data were for the testing of colistin; less information was available for polymyxin B. The joint working group was also asked to consider the setting of clinical breakpoints for relevant pathogens. This task involved examination of the available pharmacokinetic-pharmacodynamic, pharmacokinetic-toxicodynamic and population clinical pharmacokinetic data. All current pharmacokinetic-pharmacodynamic targets are based on MICs generated using the reference broth dilution procedure.


Colistin Polymyxin B Susceptibility testing methods Need for stringent control of conditions Clinical breakpoints 


  1. 1.
    Turnidge J, Paterson DL (2007) Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20(3):391–408. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    ISO 20776-1 (2006) Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaulation of peformance of antimicrobial susceptibility test devices. Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. Internation Organization for Standardization, GenevaGoogle Scholar
  3. 3.
    Clinical and Laboratory Standards Institute (CLSI) (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard, 10th edn. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  4. 4.
    EUCAST DISCUSSION DOCUMENT E. Dis 5.1 Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution (2003). Clin Microbiol Infect 9:1–7Google Scholar
  5. 5.
    Bergen PJ, Li J, Rayner CR, Nation RL (2006) Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50(6):1953–1958. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K (2003) Stability of colistin and colistin methanesulfonate in aqueous media and plasma as determined by high-performance liquid chromatography. Antimicrob Agents Chemother 47(4):1364–1370CrossRefGoogle Scholar
  7. 7.
    Orwa JA, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J (2001) Isolation and structural characterization of colistin components. J Antibiot (Tokyo) 54(7):595–599CrossRefGoogle Scholar
  8. 8.
    He J, Ledesma KR, Lam WY, Figueroa DA, Lim TP, Chow DS, Tam VH (2010) Variability of polymyxin B major components in commercial formulations. Int J Antimicrob Agents 35(3):308–310. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roberts KD, Azad MA, Wang J, Horne AS, Thompson PE, Nation RL, Velkov T, Li J (2015) Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: last-line antibiotics against multidrug-resistant gram-negative bacteria. ACS Infect Dis 1(11):568–575. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tam VH, Cao H, Ledesma KR, Hu M (2011) In vitro potency of various polymyxin B components. Antimicrob Agents Chemother 55(9):4490–4491. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Newton BA (1954) Site of action of polymyxin on Pseudomonas aeruginosa: antagonism by cations. J Gen Microbiol 10(3):491–499CrossRefGoogle Scholar
  12. 12.
    Davis SD, Iannetta A, Wedgwood RJ (1971) Activity of colistin against Pseudomonas aeruginosa: inhibition by calcium. J Infect Dis 124(6):610–612CrossRefGoogle Scholar
  13. 13.
    Chen CC, Feingold DS (1972) Locus of divalent cation inhibition of the bactericidal action of polymyxin B. Antimicrob Agents Chemother 2(5):331–335CrossRefGoogle Scholar
  14. 14.
    D’Amato RF, Thornsberry C, Baker CN, Kirven LA (1975) Effect of calcium and magnesium ions on the susceptibility of Pseudomonas species to tetracycline, gentamicin polymyxin B, and carbenicillin. Antimicrob Agents Chemother 7(5):596–600CrossRefGoogle Scholar
  15. 15.
    Girardello R, Bispo PJ, Yamanaka TM, Gales AC (2012) Cation concentration variability of four distinct Mueller-Hinton agar brands influences polymyxin B susceptibility results. J Clin Microbiol 50(7):2414–2418. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Veenemans J, Mouton JW, Kluytmans JA, Donnely R, Verhulst C, van Keulen PH (2012) Effect of manganese in test media on in vitro susceptibility of Enterobacteriaceae and Acinetobacter baumannii to tigecycline. J Clin Microbiol 50(9):3077–3079. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    ISO/TS 16782 (2016) Clinical laboratory testing -- Criteria for acceptable lots of dehydrated Mueller-Hinton agar and broth for antimicrobial susceptibility testing. International Organization for Standardization, GenevaGoogle Scholar
  18. 18.
    Albur M, Noel A, Bowker K, Macgowan A (2014) Colistin susceptibility testing: time for a review. J Antimicrob Chemother 69(5):1432–1434. CrossRefPubMedGoogle Scholar
  19. 19.
    Karvanen M, Malmberg C, Lagerback P, Friberg LE, Cars O (2017) Colistin is extensively lost during standard in vitro experimental conditions. Antimicrob Agents Chemother 61(11).
  20. 20.
    Rennie RP, Koeth L, Jones RN, Fritsche TR, Knapp CC, Killian SB, Goldstein BP (2007) Factors influencing broth microdilution antimicrobial susceptibility test results for dalbavancin, a new glycopeptide agent. J Clin Microbiol 45(10):3151–3154. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Arhin FF, Sarmiento I, Belley A, McKay GA, Draghi DC, Grover P, Sahm DF, Parr TR Jr, Moeck G (2008) Effect of polysorbate 80 on oritavancin binding to plastic surfaces: implications for susceptibility testing. Antimicrob Agents Chemother 52(5):1597–1603. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hindler JA, Humphries RM (2013) Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol 51(6):1678–1684. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sader HS, Rhomberg PR, Flamm RK, Jones RN (2012) Use of a surfactant (polysorbate 80) to improve MIC susceptibility testing results for polymyxin B and colistin. Diagn Microbiol Infect Dis 74(4):412–414. CrossRefPubMedGoogle Scholar
  24. 24.
    Wan LS, Lee PF (1974) CMC of polysorbates. J Pharm Sci 63(1):136–137CrossRefGoogle Scholar
  25. 25.
    Brown S, Traczewski M (2013) Quality control limits for microdilution susceptibility tests of colistin against Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 278563. Clinical and Laboratory Standards InstituteGoogle Scholar
  26. 26.
    Brown MR, Winsley BE (1971) Synergism between polymyxin and polysorbate 80 against Pseudomonas aeruginosa. J Gen Microbiol 68(3):367–373CrossRefGoogle Scholar
  27. 27.
    Matsen JM, Koepcke MJ, Quie PG (1969) Evaluation of the Bauer-Kirby-Sherris-Turck single-disc diffusion method of antibiotic susceptibility testing. Antimicrob Agents Chemother (Bethesda) 9:445–453Google Scholar
  28. 28.
    Gales AC, Reis AO, Jones RN (2001) Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J Clin Microbiol 39(1):183–190. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tan TY, Ng LS (2006) Comparison of three standardized disc susceptibility testing methods for colistin. J Antimicrob Chemother 58(4):864–867. CrossRefPubMedGoogle Scholar
  30. 30.
    Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH (2007) Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob Agents Chemother 51(10):3726–3730. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Moskowitz SM, Garber E, Chen Y, Clock SA, Tabibi S, Miller AK, Doctor M, Saiman L (2010) Colistin susceptibility testing: evaluation of reliability for cystic fibrosis isolates of Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J Antimicrob Chemother 65(7):1416–1423. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Maalej SM, Meziou MR, Rhimi FM, Hammami A (2011) Comparison of disc diffusion, Etest and agar dilution for susceptibility testing of colistin against Enterobacteriaceae. Lett Appl Microbiol 53(5):546–551. CrossRefPubMedGoogle Scholar
  33. 33.
    van der Heijden IM, Levin AS, De Pedri EH, Fung L, Rossi F, Duboc G, Barone AA, Costa SF (2007) Comparison of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P. Aeruginosa to polymyxins. Ann Clin Microbiol Antimicrob 6:8. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tan TY, Ng SY (2007) Comparison of Etest, Vitek and agar dilution for susceptibility testing of colistin. Clin Microbiol Infect 13(5):541–544. CrossRefPubMedGoogle Scholar
  35. 35.
    Matuschek E, Ahman J, Webster C, Kahlmeter G (2018) Antimicrobial susceptibility testing of colistin – evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect 24(8):865–870. CrossRefPubMedGoogle Scholar
  36. 36.
    Hogardt M, Schmoldt S, Gotzfried M, Adler K, Heesemann J (2004) Pitfalls of polymyxin antimicrobial susceptibility testing of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother 54(6):1057–1061. CrossRefPubMedGoogle Scholar
  37. 37.
    Vaara M, Sader HS, Rhomberg PR, Jones RN, Vaara T (2013) Antimicrobial activity of the novel polymyxin derivative NAB739 tested against Gram-negative pathogens. J Antimicrob Chemother 68(3):636–639. CrossRefPubMedGoogle Scholar
  38. 38.
    Sader HS, Rhomberg PR, Farrell DJ, Jones RN (2015) Differences in potency and categorical agreement between colistin and polymyxin B when testing 15,377 clinical strains collected worldwide. Diagn Microbiol Infect Dis 83(4):379–381. CrossRefPubMedGoogle Scholar
  39. 39.
    Mouton J, Ambrose P, Kahlmeter G, Wikler M, Craig W (2007) Applying pharmacodynamics for susceptibility breakpoint selection and susceptibility testing. In: Nightingale CAP, Drusano GL, Murakawa T (eds) Antimicrobial pharmacodynamics in theory and clinical practice, 2nd edn. Informa Healthcare/CRC Press, New York, pp 21–44CrossRefGoogle Scholar
  40. 40.
    Li J, Turnidge J, Milne R, Nation RL, Coulthard K (2001) In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 45(3):781–785. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dudhani RV, Turnidge JD, Coulthard K, Milne RW, Rayner CR, Li J, Nation RL (2010) Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 54(3):1117–1124. CrossRefGoogle Scholar
  42. 42.
    Cheah SE, Wang J, Nguyen VT, Turnidge JD, Li J, Nation RL (2015) New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother 70(12):3291–3297. CrossRefGoogle Scholar
  43. 43.
    Tsala M, Vourli S, Georgiou PC, Pournaras S, Tsakris A, Daikos GL, Mouton JW, Meletiadis J (2018) Exploring colistin pharmacodynamics against Klebsiella pneumoniae: a need to revise current susceptibility breakpoints. J Antimicrob Chemother 73(4):953–961. CrossRefPubMedGoogle Scholar
  44. 44.
    Tam VH, Schilling AN, Vo G, Kabbara S, Kwa AL, Wiederhold NP, Lewis RE (2005) Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob Agents Chemother 49(9):3624–3630. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Landersdorfer CB, Wang J, Wirth V, Chen K, Kaye KS, Tsuji BT, Li J, Nation RL (2018) Pharmacokinetics/pharmacodynamics of systemically administered polymyxin B against Klebsiella pneumoniae in mouse thigh and lung infection models. J Antimicrob Chemother 73(2):462–468. CrossRefGoogle Scholar
  46. 46.
    Sorli L, Luque S, Grau S, Berenguer N, Segura C, Montero MM, Alvarez-Lerma F, Knobel H, Benito N, Horcajada JP (2013) Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis 13:380. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Forrest A, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, Li J, Silveira FP, Nation RL (2017) Pharmacokinetic/Toxicodynamic analysis of colistin-associated acute kidney injury in critically ill patients. Antimicrob Agents Chemother 61(11).
  48. 48.
    Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, Karaiskos I, Poulakou G, Kontopidou F, Armaganidis A, Cars O, Giamarellou H (2009) Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 53(8):3430–3436. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A, Nation RL (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55(7):3284–3294. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Karaiskos I, Friberg LE, Pontikis K, Ioannidis K, Tsagkari V, Galani L, Kostakou E, Baziaka F, Paskalis C, Koutsoukou A, Giamarellou H (2015) Colistin population pharmacokinetics after application of a loading dose of 9 MU colistin methanesulfonate in critically Ill patients. Antimicrob Agents Chemother 59(12):7240–7248. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jacobs M, Gregoire N, Megarbane B, Gobin P, Balayn D, Marchand S, Mimoz O, Couet W (2016) Population pharmacokinetics of colistin methanesulphonate (CMS) and colistin in critically ill patients with acute renal failure requiring intermittent haemodialysis. Antimicrob Agents Chemother 60(3):1788–1793. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nation RL, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Forrest A, Paterson DL, Li J, Silveira FP (2017) Dosing guidance for intravenous colistin in critically ill patients. Clin Infect Dis 64(5):565–571. CrossRefGoogle Scholar
  53. 53.
    Nation RL, Garonzik SM, Li J, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, Turnidge JD, Forrest A, Silveira FP (2016) Updated US and European dose recommendations for intravenous colistin: how do they perform? Clin Infect Dis 62(5):552–558. CrossRefPubMedGoogle Scholar
  54. 54.
    Food-and-Drug-Administration (2013) Approved drug products. Label and approval history for Coly-Mycin M, NDA 050108. Last accessed 16 June 2019
  55. 55.
    European-Medicines-Agency (2014) Assessment report on polymyxin-based products. Referral under Article 31 of Directive 2001/83/EC. Last accessed 16 June 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Adelaide Medical SchoolUniversity of AdelaideAdelaideAustralia
  2. 2.MicroscanWest SacramentoUSA
  3. 3.Department of Medical Microbiology and Infectious Diseases, Erasmus Medical CentreRotterdamThe Netherlands

Personalised recommendations