Advertisement

Fault Attacks on UOV and Rainbow

  • Juliane KrämerEmail author
  • Mirjam Loiero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11421)

Abstract

Multivariate cryptography is one of the main candidates for creating post-quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. The signature schemes UOV and Rainbow are two of the most promising and best studied multivariate schemes which have proven secure for more than a decade. However, so far the security of multivariate signature schemes towards physical attacks has not been appropriately assessed. Towards a better understanding of the physical security of multivariate signature schemes, this paper presents fault attacks against SingleField schemes, especially UOV and Rainbow. Our analysis shows that although promising attack vectors exist, multivariate signature schemes inherently offer a good protection against fault attacks.

Keywords

Multivariate cryptography Rainbow UOV Fault attacks 

Notes

Acknowledgments

This work has been co-funded by the DFG as part of project P1 within the CRC 1119 CROSSING. We thank Mohamed Saied Emam Mohamed for his contribution to a preliminary version of this work and Albrecht Petzold for his diligent proofreading of this paper.

Supplementary material

References

  1. 1.
    Round 2 submissions - post-quantum cryptography—CSRC (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions. Accessed 14 Feb 2019
  2. 2.
    Albrecht, Bulygin, S., Buchmann, J.A.: Selecting parameters for the rainbow signature scheme - extended version. IACR Cryptology ePrint Archive 2010, p. 437 (2010)Google Scholar
  3. 3.
    Blömer, J., da Silva, R.G., Günther, P., Krämer, J., Seifert, J.P.: A practical second-order fault attack against a real-world pairing implementation. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 123–136 (2014)Google Scholar
  4. 4.
    Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85053-3_4CrossRefGoogle Scholar
  5. 5.
    Braeken, A., Wolf, C., Preneel, B.: A study of the security of unbalanced oil and vinegar signature schemes. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 29–43. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30574-3_4CrossRefGoogle Scholar
  6. 6.
    Bulygin, S., Petzoldt, A., Buchmann, J.: Towards provable security of the unbalanced oil and vinegar signature scheme under direct attacks. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 17–32. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17401-8_3CrossRefGoogle Scholar
  7. 7.
    Charlap, L.S., Rees, H.D., Robbins, D.P.: The asymptotic probability that a random biased matrix is invertible. Discrete Math. 82(2), 153–163 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, A.I.-T., et al.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04138-9_3CrossRefGoogle Scholar
  9. 9.
    Czypek, P., Heyse, S., Thomae, E.: Efficient implementations of MQPKS on constrained devices. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 374–389. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33027-8_22CrossRefGoogle Scholar
  10. 10.
    Ding, J., Chen, M., Petzoldt, A., Schmidt, D., Yang, B.: Rainbow - algorithm specification and documentation, November 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
  11. 11.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_12CrossRefGoogle Scholar
  12. 12.
    Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_16CrossRefGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  14. 14.
    Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public key cryptosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 1–18. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25405-5_1CrossRefGoogle Scholar
  15. 15.
    Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public key cryptosystems. IEICE Trans. 96-A(1), 196–205 (2013)Google Scholar
  16. 16.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_15CrossRefGoogle Scholar
  17. 17.
    Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055733CrossRefGoogle Scholar
  18. 18.
    Okeya, K., Takagi, T., Vuillaume, C.: On the importance of protecting \(\Delta \) in SFLASH against side channel attacks. In: Proceedings of the International Conference on Information Technology: Coding and Computing, ITCC 2004, vol. 2, pp. 560–568 (2004)Google Scholar
  19. 19.
    Park, A., Shim, K.A., Koo, N., Han, D.G.: Side-channel attacks on post-quantum signature schemes based on multivariate quadratic equations. IACR Trans. Crypt. Hardware Embed. Syst. 2018(3), 500–523 (2018)Google Scholar
  20. 20.
    Petzoldt, A.: Selecting and reducing key sizes for multivariate cryptography. Ph.D. thesis, Darmstadt University of Technology, Germany (2013)Google Scholar
  21. 21.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Steinwandt, R., Geiselmann, W., Beth, T.: A theoretical DPA-based cryptanalysis of the NESSIE candidates FLASH and SFLASH. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 280–293. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45439-X_19CrossRefGoogle Scholar
  23. 23.
    Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware implementation of rainbow signature on FPGAs. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 228–243. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25405-5_15CrossRefGoogle Scholar
  24. 24.
    Yi, H., Li, W.: On the importance of checking multivariate public KeyCryptography for side-channel attacks: the case of enTTS scheme. Comput. J. 60(8), 1197–1209 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yi, H., Nie, Z.: High-speed hardware architecture for implementations of multivariate signature generations on FPGAs. EURASIP J. Wirel. Commun. Networking 2018(1), 93 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TU DarmstadtDarmstadtGermany

Personalised recommendations