Advertisement

Multimodal Swarm Algorithm Based on the Collective Animal Behavior (CAB) for Circle Detection

  • Erik CuevasEmail author
  • Fernando Fausto
  • Adrián González
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 160)

Abstract

In engineering problems due to physical and cost constraints, the best results, obtained by a global optimization algorithm, cannot be realized always. Under such conditions, if multiple solutions (local and global) are known, the implementation can be quickly switched to another solution without much interrupting the design process. This chapter presents a swarm multimodal optimization algorithm named as the Collective Animal Behavior (CAB). Animal groups, such as schools of fish, flocks of birds, swarms of locusts and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central location or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency to follow better migration routes, to improve their aerodynamic and to avoid predation. In the proposed algorithm, searcher agents emulate a group of animals which interact to each other based on simple biological laws that are modeled as evolutionary operators. Numerical experiments are conducted to compare the proposed method with the state-of-the-art methods on benchmark functions. The proposed algorithm has been also applied to the engineering problem of multi circle detection, achieving satisfactory results.

References

  1. 1.
    Ahrari, A., Shariat-Panahi, M., Atai, A.A.: GEM: a novel evolutionary optimization method with improved neighbourhood search. Appl. Math. Comput. 210(2), 376–386 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, Chichester, UK (1966)zbMATHGoogle Scholar
  3. 3.
    De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems, Ph.D. thesis, University of Michigan, Ann Arbor, MI (1975)Google Scholar
  4. 4.
    Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)Google Scholar
  5. 5.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)Google Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston, MA (1989)zbMATHGoogle Scholar
  7. 7.
    de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: Part I—Basic theory and applications. Technical report, TR-DCA 01/99 (1999)Google Scholar
  8. 8.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.G.S.A.: A gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  12. 12.
    Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Geem, Z.W.: Novel derivative of harmony search algorithm for discrete design variables. Appl. Math. Comput. 199, 223–230 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gao, X.Z., Wang, X., Ovaska, S.J.: Uni-modal and multi-modal optimization using modified harmony search methods. Int. J. Innov. Comput. Inf. Control. 5(10A), 2985–2996 (2009)Google Scholar
  15. 15.
    Beasley, D., Bull, D.R., Matin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1(2), 101–125 (1993)CrossRefGoogle Scholar
  16. 16.
    Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of the 3rd IEEE Conference on Evolutionary Computation, pp. 786–791 (1996)Google Scholar
  17. 17.
    Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. dissertation, Illinois Genetic Algorithm Laboratory, University of Illinois, Urbana, IL (1995)Google Scholar
  18. 18.
    Mengshoel, O.J., Goldberg, D.E.: Probability crowding: deterministic crowding with probabilistic replacement. In: Banzhaf, W. (ed.), Proceedings of International Conferences GECCO-1999, Orlando, FL, pp. 409–416 (1999)Google Scholar
  19. 19.
    Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Proceedings of the 1993 International Conference on Artificial Neural Networks and Genetic Algorithms, pp. 450–457 (1993)Google Scholar
  20. 20.
    Petrowski, A.: A clearing procedure as a niching method for genetic algorithms,. In: Proceeding of the 1996 IEEE International Conference on Evolutionary Computation, pp. 798–803. IEEE Press, New York (1996)Google Scholar
  21. 21.
    Li, J.P., Balazs, M.E., Parks, G.T., Glarkson, P.J.: A species conserving genetic algorithms for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)CrossRefGoogle Scholar
  22. 22.
    Lianga, Y., Kwong-Sak, L.: Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl. Soft Comput. 11, 2017–2034 (2011)CrossRefGoogle Scholar
  23. 23.
    Wei, L.Y., Zhao, M.: A niche hybrid genetic algorithm for global optimization of continuous multimodal functions. Appl. Math. Comput. 160(3), 649–661 (2005)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Castro, L.N., Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6, 239–251 (2002)CrossRefGoogle Scholar
  25. 25.
    Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proceedings of the 2002 IEEE International Conference on Evolutionary Computation. IEEE Press, New York, pp. 699–704 (2002)Google Scholar
  26. 26.
    Xu, Q., Lei, W., Si, J.: Predication based immune network for multimodal function optimization. Eng. Appl. Artif. Intell. 23, 495–504 (2010)CrossRefGoogle Scholar
  27. 27.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  28. 28.
    Liang, Jj, Qin, A.K., Suganthan, P.N.: Comprehensive learning particle swarm optimizer for global optimization of multi-modal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)Google Scholar
  29. 29.
    Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its application. Appl. Soft Comput. 9(1), 39–48 (2009)CrossRefGoogle Scholar
  30. 30.
    Sumper, D.: The principles of collective animal behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 36(1465), 5–22 (2006)CrossRefGoogle Scholar
  31. 31.
    Petit, O., Bon, R.: Decision-making processes: the case of collective movements. Behav. Proc. 84, 635–647 (2010)CrossRefGoogle Scholar
  32. 32.
    Kolpas, A., Moehlis, J., Frewen, T., Kevrekidis, I.: Coarse analysis of collective motion with different communication mechanisms. Math. Biosci. 214, 49–57 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Couzin, I.: Collective cognition in animal groups. Trends in Cogn. Sci. 13(1), 36–43 (2008)CrossRefGoogle Scholar
  34. 34.
    Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Stud. Behav. 32, 1–75 (2003)CrossRefGoogle Scholar
  35. 35.
    Bode, N., Franks, D., Wood, A.: Making noise: emergent stochasticity in collective motion. J. Theor. Biol. 267, 292–299 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Couzi, I., Krause, I., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Couzin, I.D.: Collective minds. Nature 445, 715–728 (2007)CrossRefGoogle Scholar
  38. 38.
    Bazazi, S., Buhl, J., Hale, J.J., Anstey, M.L., Sword, G.A., Simpson, S.J., Couzin, I.D.: Collective motion and cannibalism in locust migratory bands. Curr. Biol. 18, 735–739 (2008)CrossRefGoogle Scholar
  39. 39.
    Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle Hough transform. In: Proceedings of IEE Colloquium on the Hough Transform. IEE, London (1993)Google Scholar
  40. 40.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognit. Lett. 11(5), 331–338 (1990)zbMATHCrossRefGoogle Scholar
  41. 41.
    Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recognit. Lett. 27, 652–657 (2006)CrossRefGoogle Scholar
  42. 42.
    Cuevas, Erik, Ortega-Sánchez, Noé, Zaldivar, Daniel, Pérez-Cisneros, Marco: Circle detection by harmony search optimization. J. Intell. Rob. Syst. 66(3), 359–376 (2012)CrossRefGoogle Scholar
  43. 43.
    Cuevas, Erik, Oliva, Diego, Zaldivar, Daniel, Pérez-Cisneros, Marco, Sossa, Humberto: Circle detection sing electro-magnetism optimization. Inf. Sci. 182(1), 40–55 (2012)CrossRefGoogle Scholar
  44. 44.
    Cuevas, Erik, Zaldivar, Daniel, Pérez-Cisneros, Marco, Ramírez-Ortegón, Marte: Circle detection using discrete differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Dasgupta, Sambarta, Das, Swagatam, Biswas, Arijit, Abraham, Ajith: Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft. Comput. 14(11), 1151–1164 (2010)CrossRefGoogle Scholar
  46. 46.
    Bode, N., Wood, A., Franks, D.: The impact of social networks on animal collective motion. Anim. Behav. 82(1), 29–38 (2011)CrossRefGoogle Scholar
  47. 47.
    Lemasson, B., Anderson, J., Goodwin, R.: Collective motion in animal groups from a neurobiological perspective: The adaptive benefits of dynamic sensory loads and selective attention. J. Theor. Biol. 261(4), 501–510 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Bourjade, M., Thierry, B., Maumy, M., Petit, O.: Decision-making processes in the collective movements of Przewalski horses families Equus ferus Przewalskii: influences of the environment. Ethology 115, 321–330 (2009)CrossRefGoogle Scholar
  49. 49.
    Banga, A., Deshpande, S., Sumanab, A., Gadagkar, R.: Choosing an appropriate index to construct dominance hierarchies in animal societies: a comparison of three indices. Anim. Behav. 79(3), 631–636 (2010)CrossRefGoogle Scholar
  50. 50.
    Hsu, Y., Earley, R., Wolf, L.: Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol. Rev. 81(1), 33–74 (2006)CrossRefGoogle Scholar
  51. 51.
    Broom, M., Koenig, A., Borries, C.: Variation in dominance hierarchies among group-living animals: modeling stability and the likelihood of coalitions. Behav. Ecol. 20, 844–855 (2009)CrossRefGoogle Scholar
  52. 52.
    Bayly, K.L., Evans, C.S., Taylor, A.: Measuring social structure: a comparison of eight dominance indices. Behav. Proc. 73, 1–12 (2006)CrossRefGoogle Scholar
  53. 53.
    Conradt, L., Roper, T.J.: Consensus decision-making in animals. Trends Ecol. Evol. 20, 449–456 (2005)CrossRefGoogle Scholar
  54. 54.
    Okubo, A.: Dynamical aspects of animal grouping. Adv. Biophys. 22, 1–94 (1986)CrossRefGoogle Scholar
  55. 55.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioural model. Comp. Graph. 21, 25–33 (1987)CrossRefGoogle Scholar
  56. 56.
    Gueron, S., Levin, S.A., Rubenstein, D.I.: The dynamics of mammalian herds: from individual to aggregations. J. Theor. Biol. 182, 85–98 (1996)Google Scholar
  57. 57.
    Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Phys. A 281, 17–29 (2000)CrossRefGoogle Scholar
  58. 58.
    Ballerini, M.: Interaction ruling collective animal behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105, 1232–1237 (2008)CrossRefGoogle Scholar
  59. 59.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  60. 60.
    Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput.  https://doi.org/10.1007/s00366-011-0241-y
  61. 61.
    Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7, S232–S237 (2010)CrossRefGoogle Scholar
  62. 62.
    Gandomi, A., Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20, 100–106 (1977)zbMATHCrossRefGoogle Scholar
  64. 64.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J. Heurist. (2008).  https://doi.org/10.1007/s10732-008-9080-4
  66. 66.
    Santamaría, J., Cordón, O., Damas, S., García-Torres, J.M., Quirin, A.: Performance evaluation of memetic approaches in 3D reconstruction of forensic objects. Soft Comput. (2008).  https://doi.org/10.1007/s00500-008-0351-7

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Erik Cuevas
    • 1
    Email author
  • Fernando Fausto
    • 2
  • Adrián González
    • 3
  1. 1.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  3. 3.CUCEI, Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations