Advertisement

The Locust Swarm Optimization Algorithm

  • Erik CuevasEmail author
  • Fernando Fausto
  • Adrián González
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 160)

Abstract

In recent years swarm intelligence emulate the behavior of insects or animal. In this chapter, an optimization algorithm called Locust Search (LS) is presented. The LS is inspired of the behavior of the locust swarms. In the algorithm consider two different behaviors: solitary and social. This tow types of behavior interact with each other in ways to allow find solution to a complex optimization problem. In order to illustrate the efficiency and robustness the LS was compared with other well-known optimization algorithms. The algorithm was proved with several benchmark functions.

References

  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press Inc., New York (1999)zbMATHGoogle Scholar
  2. 2.
    Kassabalidis, I., El-Sharkawi, M.A., Marks, R.J. II, Arabshahi, P., Gray, A.A.: Swarm intelligence for routing in communication networks. In: Global Telecommunications Conference, GLOBECOM ’01, 6, IEEE, pp. 3613–3617 (2001)Google Scholar
  3. 3.
    Kennedy, J., & Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (Dec. 1995)Google Scholar
  4. 4.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University (2005)Google Scholar
  5. 5.
    Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yang, X.S.: Engineering optimization: an introduction with metaheuristic applications. Wiley, New York (2010)Google Scholar
  8. 8.
    Yang, X.S., Deb, S.: Proceedings of World Congress on Nature & Biologically Inspired Computing. IEEE Publications, India, pp. 210–214 (2009)Google Scholar
  9. 9.
    Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)CrossRefGoogle Scholar
  10. 10.
    Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An algorithm for global optimization inspired by collective animal behaviour. Discrete Dynamics in Nature and Society 2012, art. no. 638275Google Scholar
  11. 11.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, CA (1995)Google Scholar
  12. 12.
    Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443 (1998)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tvrdík, Josef: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput. 9(3), 1149–1155 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle swarm optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gong, Wenyin, Fialho, Álvaro, Cai, Zhihua, Li, Hui: Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2003)CrossRefGoogle Scholar
  18. 18.
    Kizaki, Shinya, Katori, Makoto: A Stochastic lattice model for locust outbreak. Phys. A 266, 339–342 (1999)CrossRefGoogle Scholar
  19. 19.
    Rogers, Stephen M., Cullen, Darron A., Anstey, Michael L., Burrows, Malcolm, Dodgson, Tim, Matheson, Tom, Ott, Swidbert R., Stettin, Katja, Sword, Gregory A., Despland, Emma, Simpson, Stephen J.: Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics. J. Insect Physiol. 65, 9–26 (2014)CrossRefGoogle Scholar
  20. 20.
    Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts. Eur. Phys. J. Special Topics 157, 93–109 (2008)CrossRefGoogle Scholar
  21. 21.
    Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics: behavioral phase change and swarming. PLOS Computational Biology 8(8), 1–11Google Scholar
  22. 22.
    Oster, G., Wilson, E.: Caste and Ecology in the Social Insects. N.J. Princeton University Press, Princeton (1978)Google Scholar
  23. 23.
    Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration (1994). ISBN 0-674-48525-4Google Scholar
  24. 24.
    Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press (1990). ISBN 0-674-04075-9Google Scholar
  25. 25.
    Tanaka, Seiji, Nishide, Yudai: Behavioral phase shift in nymphs of the desert locust, Schistocerca gregaria: Special attention to attraction/avoidance behaviors and the role of serotonin. J. Insect Physiol. 59, 101–112 (2013)CrossRefGoogle Scholar
  26. 26.
    Gaten, Edward, Huston, Stephen J., Dowse, Harold B., Matheson, Tom: Solitary and gregarious locusts differ in circadian rhythmicity of a visual output neuron. J. Biol. Rhythms 27(3), 196–205 (2012)CrossRefGoogle Scholar
  27. 27.
    Benaragama, Indika, Gray, John R.: Responses of a pair of flying locusts to lateral looming visual stimuli. J. Comp. Physiol. A. 200(8), 723–738 (2014)CrossRefGoogle Scholar
  28. 28.
    Michael G. Sergeev, Distribution patterns of grasshoppers and their kin in the boreal zone, vol. 2011, Article ID 324130, 9 pages (2011)Google Scholar
  29. 29.
    Ely, S.O., Njagi, P.G.N., Bashir, M.O., El-Amin, S.E.-T., Diel, A.H.: Behavioral activity patterns in adult solitarious desert locust, Schistocerca gregaria (Forskål). Psyche Volume 2011, Article ID 459315, 9 (2011)Google Scholar
  30. 30.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2008)Google Scholar
  31. 31.
    Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl. Intell. 40(2), 256–272 (2014)CrossRefGoogle Scholar
  32. 32.
    Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4), 635–672 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heurist. 6(2), 191–213 (2000)CrossRefGoogle Scholar
  34. 34.
    Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3), 309–338 (2003)CrossRefGoogle Scholar
  35. 35.
    Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Global Optim. 33(2), 235–255 (2005)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)CrossRefGoogle Scholar
  37. 37.
    Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J. Heurist. (2008).  https://doi.org/10.1007/s10732-008-9080-4

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Erik Cuevas
    • 1
    Email author
  • Fernando Fausto
    • 2
  • Adrián González
    • 3
  1. 1.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  3. 3.CUCEI, Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations