Metaheuristics and Swarm Methods: A Discussion on Their Performance and Applications

  • Erik CuevasEmail author
  • Fernando Fausto
  • Adrián González
Part of the Intelligent Systems Reference Library book series (ISRL, volume 160)


Nature-inspired metaheuristics are easily the largest family of optimization techniques currently on existence and they have become widely-known among researchers from virtually every single area of scientific application. While the rapid development of this area of science has originated a vast amount of novel problem-solving schemes, it has also brought many interesting questions. Nowadays, researchers are centering their attention on studying the properties on nature-inspired methods that have a direct impact on their performance, and how these properties contribute on better solving particular optimization problems. In this chapter, we present a discussion centered on several observable characteristics in nature-inspired methods and their influence on its overall performance. Furthermore, we also present a survey on some of the most important areas science and technology where nature-inspired algorithms have found applications. Finally, we expose some of the current research gaps regarding to the development and application of nature-inspired metaheuristics, as well as some of the potential directions that this area of science may take in the future.


  1. 1.
    Neumann, F., Witt, C.: Bioinspired computation in combinatorial optimization—algorithms and their computational complexityGoogle Scholar
  2. 2.
    Črepiňsek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. Art. 45(33), 1–33 (2013)zbMATHGoogle Scholar
  3. 3.
    Avigad, J., Donnelly, K.: Formalizing O notation in Isabelle/HOL. In: International Joint Conference on Automated Reasoning, pp. 357–371 (2004)Google Scholar
  4. 4.
    Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 1–14 (2013)CrossRefGoogle Scholar
  5. 5.
    Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H. (eds.) Recent Advances on Soft Computing and Data Mining, vol. 700, no. Scdm (2018)Google Scholar
  6. 6.
    Yang, X.S., Deb, S., Hanne T., He, X.: Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput. Appl. 19 (2015)Google Scholar
  7. 7.
    Du, H., Wang, Z., Zhan, W.E.I.: Elitism and distance strategy for selection of evolutionary algorithms. IEEE Access 6, 44531–44541 (2018)CrossRefGoogle Scholar
  8. 8.
    Huang, T., Jia, X., Yuan, H., Jiang, J.: Niching community based differential evolution for multimodal optimization problems (2017)Google Scholar
  9. 9.
    Piotrowski, A.P., Napiorkowski, J.J.: Some metaheuristics should be simplified. Inf. Sci. (Ny) 427, 32–62 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Piotrowski, A.P., Napiorkowski, J.J.: Searching for structural bias in particle swarm optimization and differential evolution algorithms. Swarm Intell. 10(4), 307–353 (2016)CrossRefGoogle Scholar
  11. 11.
    Yang, X.-S.: Swarm-based metaheuristic algorithms and no-free-lunch theorems. Intech Open 2, 64 (2018)Google Scholar
  12. 12.
    Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter space of evolutionary algorithms. 1–14 (2018)Google Scholar
  13. 13.
    Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63(5), 511–623 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Goudos, S.K.: Antenna design using binary differential evolution. IEEE Antennas Propag. Mag. February (2017)Google Scholar
  15. 15.
    Keshtegar, B., Hao, P., Wang, Y., Li, Y.: Optimum design of aircraft panels based on adaptive dynamic harmony search. Thin-Walled Struct. 118(May), 37–45 (2017)CrossRefGoogle Scholar
  16. 16.
    Bekdaş, G., Nigdeli, S.M., Yang, X.S.: Sizing optimization of truss structures using flower pollination algorithm. Appl. Soft Comput. J. 37, 322–331 (2015)CrossRefGoogle Scholar
  17. 17.
    Khatibinia, M., Yazdani, H.: Accelerated multi-gravitational search algorithm for size optimization of truss structures. Swarm Evol. Comput. December 2016, 0–1 (2017)Google Scholar
  18. 18.
    Shukla, R., Singh, D.: Selection of parameters for advanced machining processes using firefly algorithm. Eng. Sci. Technol. Int. J. 20(1), 1–10 (2016)Google Scholar
  19. 19.
    Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112–113, 283–294 (2012)CrossRefGoogle Scholar
  20. 20.
    Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)CrossRefGoogle Scholar
  21. 21.
    Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRefGoogle Scholar
  22. 22.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  23. 23.
    Camarena, O., Cuevas, E., Pérez-cisneros, M., Fausto, F., González, A., Valdivia, A.: Ls-II : an improved locust search algorithm for solving constrained optimization problems (2018)Google Scholar
  24. 24.
    Mesejo, P., Ibáñez, Ó., Cordón, Ó., Cagnoni, S.: A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl. Soft Comput. J. 44, 1–29 (2016)CrossRefGoogle Scholar
  25. 25.
    Khairuzzaman, A.K.M., Chaudhury, S.: Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst. Appl. 86, 64–76 (2017)CrossRefGoogle Scholar
  26. 26.
    Khairuzzaman, A.K.M., Chadhury, S.: Moth-flame optimization algorithm based multilevel thresholding for image segmentation. Int. J. Appl. Metaheuristic Comput. 8(4), 58–83 (2017)CrossRefGoogle Scholar
  27. 27.
    Horng, M.-H., Jiang, T.-W.: Multilevel image thresholding selection using the artificial bee colony algorithm. Artif. Intell. Comput. Intell. 6320, 318–325 (2010)CrossRefGoogle Scholar
  28. 28.
    Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584 (2016)CrossRefGoogle Scholar
  29. 29.
    El Aziz, M.A., Ewees, A.A., Hassanien, A.E.: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 83, 242–256 (2017)CrossRefGoogle Scholar
  30. 30.
    He, L., Huang, S.: Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 240, 152–174 (2017)CrossRefGoogle Scholar
  31. 31.
    Olague, G., Trujillo, L.: Interest point detection through multiobjective genetic programming. Appl. Soft Comput. J. 12(8), 2566–2582 (2012)CrossRefGoogle Scholar
  32. 32.
    Kiranyaz, S., Uhlmann, S., Ince, T., Gabbouj, M..: Perceptual dominant color extraction by multidimensional particle swarm optimization. EURASIP J. Adv. Signal Process 2009 (2015)Google Scholar
  33. 33.
    Zou, Y., Chakrabarty, K.: Sensor deployment and target localization based on virtual forces. In: Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, no. C, pp. 1293–1303 (2003)Google Scholar
  34. 34.
    Zhou, Y., Zhao, R., Luo, Q., Wen, C.: Sensor deployment scheme based on social spider optimization algorithm for wireless sensor networks. Neural Process. Lett. (2017)Google Scholar
  35. 35.
    Deif, D.S., Member, S., Gadallah, Y., Member, S.: An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access 5, 10744–10756 (2017)Google Scholar
  36. 36.
    Alia, O.M., Al-Ajouri, A.: Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sens. J. 17(3), 882–896 (2017)CrossRefGoogle Scholar
  37. 37.
    Mann, P.S., Singh, S.: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks. Eng. Appl. Artif. Intell. 57(November 2016), 142–152 (2017)Google Scholar
  38. 38.
    Goyal, S., Patterh, M.S.: Performance of BAT algorithm on localization of wireless sensor network. Wireless Pers. Commun. 6(3), 351–358 (2015)Google Scholar
  39. 39.
    Cao, S., Wang, J., Gu, X.: A wireless sensor network location algorithm based on firefly algorithm. In: Asia Simulation Conference 2012, pp. 18–26 (2012)Google Scholar
  40. 40.
    Rahimi, S., Abdollahpouri, A., Moradi, P.: A multi-objective particle swarm optimization algorithm for community detection in complex networks. Swarm Evol. Comput. 39(February 2017), 297–309 (2018)Google Scholar
  41. 41.
    Guerrero, M., Montoya, F.G., Baños, R., Alcayde, A., Gil, C.: Adaptive community detection in complex networks using genetic algorithms. Neurocomputing 266, 101–113 (2017)CrossRefGoogle Scholar
  42. 42.
    Bhardwaj, T., Sharma, T.K., Pandit, M.R.: Social engineering prevention by detecting malicious URLs using artificial bee colony algorithm. In: 3rd International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems, pp. 355–363 (2014)Google Scholar
  43. 43.
    Din, M., Pal, S.K., Muttoo, S.K., Jain, A.: Applying Cuckoo search for analysis of LFSR based cryptosystem. Perspect. Sci. 8, 435–439 (2016)CrossRefGoogle Scholar
  44. 44.
    Johny, D.C., Assistant, A.J.S.: Negative selection algorithm: a survey. Int. J. Sci. Eng. Technol. Res. 6(4), 711–715 (2017)Google Scholar
  45. 45.
    Idris, I., et al.: A combined negative selection algorithm-particle swarm optimization for an email spam detection system. Eng. Appl. Artif. Intell. 39, 33–44 (2015)CrossRefGoogle Scholar
  46. 46.
    Mesbahi, T., Rizoug, N., Bartholomeus, P., Sadoun, R., Khenfri, F., Lemoigne, P.: Optimal energy management for a Li-ion battery/supercapacitor hybrid energy storage system based on particle swarm optimization incorporating Nelder-Mead simplex approach. IEEE Trans. Intell. Veh. 2(2), 1–1 (2017)Google Scholar
  47. 47.
    You, I., Yim,K., Barolli, L.: A social spider optimization based home energy management system. In: International Conference on Network-Based Information Systems, pp. 771–778 (2017)Google Scholar
  48. 48.
    Guha, D., Roy, P.K., Banerjee, S.: Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol. Comput. 27, 97–115 (2016)CrossRefGoogle Scholar
  49. 49.
    Prasad, D., Mukherjee, A., Mukherjee, V.: Application of chaotic krill herd algorithm for optimal power flow with direct current link placement problem. Chaos, Solitons Fractals 103, 90–100 (2017)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Van Sickel, J.H., Lee, K.Y., Heo, J.S.: Differential evolution and its applications to power plant control. In: 14th International Conference on Intelligent Systems Applications to Power Systems, no. 2, pp. 560–565 (2007)Google Scholar
  51. 51.
    Al-Betar, M.A., Awadallah, M.A., Abu Doush, I., Alsukhni, E., ALkhraisat, H.: A non-convex economic dispatch problem with valve loading effect using a new modified $$\beta $$β-Hill climbing local search algorithm. Arab. J. Sci. Eng. (2018)Google Scholar
  52. 52.
    Babu, T.S., Ram, J.P., Dragicevic, T., Miyatake, M., Blaabjerg, F., Rajasekar, N.: Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Trans. Sustain. Energy 3029(c) (2017)Google Scholar
  53. 53.
    Oliva, D., Cuevas, E., Pajares, G.: Parameter identification of solar cells using artificial bee colony optimization. Energy 72, 93–102 (2014)CrossRefGoogle Scholar
  54. 54.
    Han, W., Wang, H., Chen, L.: Parameters identification for photovoltaic module based on an improved artificial fish swarm algorithm. 2014 (2014)Google Scholar
  55. 55.
    Askarzadeh, A., Rezazadeh, A.: Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86(11), 3241–3249 (2012)CrossRefGoogle Scholar
  56. 56.
    Sarjila, K., Ravi, K., Edward, J.B., Kumar, K.S., Prasad, A.: Parameter extraction of solar photovoltaic modules using gravitational search algorithm. 2016 (2016)Google Scholar
  57. 57.
    Ma, J., Ting, T.O., Man, K.L., Zhang, N., Guan, S.U., Wong, P.W.H.: Parameter estimation of photovoltaic models via cuckoo search. J. Appl. Math. 2013, 10–12 (2013)MathSciNetGoogle Scholar
  58. 58.
    Valdivia-Gonzalez, A., Zaldívar, D., Fausto, F., Camarena, O., Cuevas, E., Perez-Cisneros, M.: A states of matter search-based approach for solving the problem of intelligent power allocation in plug-in hybrid electric vehicles. Energies 10(1) (2017)Google Scholar
  59. 59.
    Prakash, D.B., Lakshminarayana, C.: Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alexandria Eng. J. (2016)Google Scholar
  60. 60.
    Massan, S.U.R., Wagan, A.I., Shaikh, M.M., Abro, R.: Wind turbine micrositing by using the firefly algorithm. Appl. Soft Comput. J. 27, 450–456 (2015)CrossRefGoogle Scholar
  61. 61.
    Tolabi, H.B., Ayob, S.M.: New technique for global solar radiation forecasting by simulated annealing and genetic algorithms using. Appl. Sol. Energy 50(3), 202–206 (2014)CrossRefGoogle Scholar
  62. 62.
    Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2016)CrossRefGoogle Scholar
  63. 63.
    Moayedikia, A., Ong, K.-L., Boo, Y.L., Yeoh, W.G., Jensen, R. Feature selection for high dimensional imbalanced class data using harmony search. Eng. Appl. Artif. Intell. 57(May 2016), 38–49 (2017)Google Scholar
  64. 64.
    Wu, J., Qiu, T., Wang, L., Huang, H.: An Approach to feature selection based on ant colony optimization and rough set, pp. 466–471 (2011)Google Scholar
  65. 65.
    Wang, K.J., Adrian, A.M., Chen, K.H., Wang, K.M.: An improved electromagnetism-like mechanism algorithm and its application to the prediction of diabetes mellitus. J. Biomed. Inform. 54, 220–229 (2015)CrossRefGoogle Scholar
  66. 66.
    Alswaitti, M., Albughdadi, M., Isa, N.A.M.: Density-based particle swarm optimization algorithm for data clustering. Expert Syst. Appl. 91, 170–186 (2018)CrossRefGoogle Scholar
  67. 67.
    Abualigah, L.M., Khader, A.T., Hanandeh, E.S., Gandomi, A.H.: A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Appl. Soft Comput. J. 60, 423–435 (2017)CrossRefGoogle Scholar
  68. 68.
    Abualigah, L.M., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: A krill herd algorithm for efficient text documents clustering. In: 2016 IEEE symposium on computer applications and industrial electronics, pp. 67–72 (2016)Google Scholar
  69. 69.
    Mohammad, L., Abualigah, Q., Hanandeh, E.S.: Applying genetic algorithms to information retrieval using vector space model. Int. J. Comput. Sci. Eng. Appl. 5(1), 19–28 (2015)Google Scholar
  70. 70.
    Abualigah, L.M., Khader, A.T., Al-Betar, M.A., Alomari, O.A.: Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 84, 24–36 (2017)CrossRefGoogle Scholar
  71. 71.
    Abualigah, L.M., Khader, A.T.: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J. Supercomput. 73(11), 4773–4795 (2017)CrossRefGoogle Scholar
  72. 72.
    Han, X., Quan, L., Xiong, X., Almeter, M., Xiang, J., Lan, Y.: A novel data clustering algorithm based on modified gravitational search algorithm. Eng. Appl. Artif. Intell. 61(September 2016) 1–7 (2017)Google Scholar
  73. 73.
    Shukla, U.P., Nanda, S.J.: Parallel social spider clustering algorithm for high dimensional datasets. Eng. Appl. Artif. Intell. 56, 75–90 (2016)CrossRefGoogle Scholar
  74. 74.
    Jadhav, A.N., Gomathi, N.: WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alexandria Eng. J. (2016)Google Scholar
  75. 75.
    Sahlol, A.T., Ewees, A.A., Hemdan, A.M., Hassanien, A.E.: Training of feedforward neural networks using sine-cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite. In: Computer Engineering Conference (ICENCO), 2016 12th International Conference, pp. 35–40 (2009)Google Scholar
  76. 76.
    Rere, L.M.R., Fanany, M.I., Arymurthy, A.M.: Simulated annealing algorithm for deep learning. Procedia Comput. Sci. 72, 137–144 (2015)CrossRefGoogle Scholar
  77. 77.
    Pereira, D.R., et al.: Social-spider optimization-based support vector machines applied for energy theft detection. Comput. Electr. Eng. 49, 25–38 (2016)CrossRefGoogle Scholar
  78. 78.
    Li, P., Duan, H.: Path planning of unmanned aerial vehicle based on improved gravitational search algorithm. Sci. Chin Technol. Sci. 55(10), 2712–2719 (2012)CrossRefGoogle Scholar
  79. 79.
    Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)CrossRefGoogle Scholar
  80. 80.
    Oz, I., Topcuoglu, H.R., Ermis, M.: A meta-heuristic based three-dimensional path planning environment for unmanned aerial vehicles. Simulation 89(8), 903–920 (2013)CrossRefGoogle Scholar
  81. 81.
    Behnck, L.P., Doering, D., Pereira, C.E., Rettberg, A.: A modified simulated annealing algorithm for SUAVs path planning. IFAC-PapersOnLine 28(10), 63–68 (2015)CrossRefGoogle Scholar
  82. 82.
    Xie, C., Zheng, H.: Application of improved Cuckoo search algorithm to path planning unmanned aerial vehicles. In: Intelligent Computing Theories and Application, 12th International Conference, ICIC 2016, pp. 722–729 (2016)Google Scholar
  83. 83.
    Tsai, P., Nguyen, T., Dao, T.: Genetic and evolutionary robot path planning optimization based on multiobjective grey wolf optimizer. In: Genetic and Evolutionary Computing Proceedings of the Tenth International Conference on Genetic and Evolutionary Computing, pp. 166–173 (2016)Google Scholar
  84. 84.
    Contreras-Cruz, M.A., Lopez-Perez, J.J., Ayala-Ramirez, V.: Distributed path planning for multi-robot teams based on Artificial Bee Colony. In: IEEE Congress on Evolutionary Computation (CEC) 2017—Proceeding, pp. 541–548 (2017)Google Scholar
  85. 85.
    Silva, P., Santos, C.P., Matos, V., Costa, L.: Automatic generation of biped locomotion controllers using genetic programming. Rob. Auton. Syst. 62(10), 1531–1548 (2014)CrossRefGoogle Scholar
  86. 86.
    Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–166 (2012)CrossRefGoogle Scholar
  87. 87.
    Benkhoud, K., Bouallègue, S.: Dynamics modeling and advanced metaheuristics based LQG controller design for a Quad Tilt Wing UAV. Int. J. Dyn. Control 6(2), 630–651 (2017)MathSciNetCrossRefGoogle Scholar
  88. 88.
    Ibrahim, E., Birchell, S., Elfayoumy, S.: Automatic heart volume measurement from CMR images using ant colony optimization with iterative salient isolated thresholding. J. Cardiovasc. Magn. Reson. 14(1), 1–2 (2012)CrossRefGoogle Scholar
  89. 89.
    Ouaddah, A., Boughaci, D.: Harmony search algorithm for image reconstruction from projections. Appl. Soft Comput. J. 46, 924–935 (2016)CrossRefGoogle Scholar
  90. 90.
    Chen, C.: Image segmentation for lung lesions using ant colony optimization classifier in chest CT. In: Advances in Intelligent Information Hiding and Multimedia Signal Processing, pp. 283–289 (2017)Google Scholar
  91. 91.
    Oliva, D., Hinojosa, S., Cuevas, E., Pajares, G., Avalos, O., Gálvez, J.: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst. Appl. 79, 164–180 (2017)CrossRefGoogle Scholar
  92. 92.
    Kora, P., Kalva, S.R.: Improved Bat algorithm for the detection of myocardial infarction. Springerplus 4(1), 666 (2015)CrossRefGoogle Scholar
  93. 93.
    Nagpal, S., Arora, S., Dey, S., Shreya.: Feature selection using gravitational search algorithm for biomedical data. Procedia Comput. Sci. 115, 258–265 (2017)Google Scholar
  94. 94.
    Sahoo, A., Chandra, S.: Multi-objective grey wolf optimizer for improved cervix lesion classification. Appl. Soft Comput. J. 52, 64–80 (2017)CrossRefGoogle Scholar
  95. 95.
    Alshamlan, H., Badr, G., Alohali, Y.: MRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed Res. Int. 2015 (2015)Google Scholar
  96. 96.
    Alomari, O.A., Khader, A.T., Al Betar, M.A., Abualigah, L.M.: Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int. J. Data Min. Bioinform. 19(1), 32 (2017)Google Scholar
  97. 97.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  98. 98.
    Vocking, B., et al.: Algorithms Unplugged. Springer, Berlin Heidelberg (2011)zbMATHCrossRefGoogle Scholar
  99. 99.
    Pardalos, P.M., Du, D.-Z., Graham, R. L.: Handbook of Combinatorial Optimization. Springer US (2013)Google Scholar
  100. 100.
    Laguna, M., Martí, R.: Scatter Search, Methodology and Implementations in C. Springer US (2003)Google Scholar
  101. 101.
    Galinier, P., Hamiez, J.P., Hao, J.K., Porumbel, D.: Handbook of Optimization, vol. 38 (2013)Google Scholar
  102. 102.
    Sapra, D., Sharma, R., Agarwal, A.P.: Comparative study of metaheuristic algorithms using Knapsack Problem. In: Proceedings of 7th International Conference on Cloud Computing, Data Science and Engineering-Confluence, pp. 134–137 (2017)Google Scholar
  103. 103.
    Feng, Y., Wang, G.G., Deb, S., Lu, M., Zhao, X.J.: Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput. Appl. 28(7), 1619–1634 (2017)CrossRefGoogle Scholar
  104. 104.
    Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer US (2007)Google Scholar
  105. 105.
    Saji, Y., Riffi, M.E.: A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput. Appl. 27(7), 1853–1866 (2016)CrossRefGoogle Scholar
  106. 106.
    Zhou, Y., Wang, R., Zhao, C., Luo, Q., Metwally, M.A.: Discrete greedy flower pollination algorithm for spherical traveling salesman problem. Neural Comput. Appl. 1–16 (2017)Google Scholar
  107. 107.
    Pereira, F.B., Tavares, J.: Bio-inspired Algorithms for the Vehicle Routing Problem. Springer US (2009)Google Scholar
  108. 108.
    Yurtkuran, A., Emel, E.: A new hybrid electromagnetism-like algorithm for capacitated vehicle routing problems. Expert Syst. Appl. 37(4), 3427–3433 (2010)CrossRefGoogle Scholar
  109. 109.
    Wei, L., Zhang, Z., Zhang, D., Leung, S.C.H.: A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res. 1–17 (2017)Google Scholar
  110. 110.
    Marinaki, M., Marinakis, Y.: A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands. Expert Syst. Appl. 46(4), 145–163 (2016)CrossRefGoogle Scholar
  111. 111.
    Potvin, J.Y.: A review of bio-inspired algorithms for vehicle routing. Stud. Comput. Intell. 161(July), 1–34 (2009)Google Scholar
  112. 112.
    Xu, H., Pu, P., Duan, F.: Dynamic vehicle routing problems with enhanced ant colony optimization. Discret. Dyn. Nat. Soc. 2018, 1–13 (2018)zbMATHGoogle Scholar
  113. 113.
    Zhang, S.Z., Lee, C.K.M.: An improved artificial bee colony algorithm for the capacitated vehicle routing problem. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics—SMC 2015, pp. 2124–2128 (2016)Google Scholar
  114. 114.
    Xiang, T.: Vehicle routing problem based on particle swarm optimization algorithm with gauss mutation. Am. J. Softw. Eng. Appl. 5(1), 1 (2016)Google Scholar
  115. 115.
    Jourdan, L., Basseur, M., Talbi, E.G.: Hybridizing exact methods and metaheuristics: a taxonomy. Eur. J. Oper. Res. 199(3), 620–629 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Puchinger, J.: Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification, pp. 1–12 (2006)Google Scholar
  117. 117.
    Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and metaheuristics for 0–1 programming. Int. Trans. Oper. Res. 9(6), 731–746 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Yan, L., Yujuan, Q., Zujian, W., Wang, L., Yan, J.: A hybrid method combining genetic algorithm and Hooke-Jeeves method for 4PLRP. In: International Conference on Communications in China-Workshops (CIC/ICCC) 2014, vol. 10, no. 4, pp. 36–40 (2015)Google Scholar
  119. 119.
    Portmann, M.C., Vignier, A., Dardilhac, D., Dezalay, D.: Branch and bound crossed with GA to solve hybrid flowshops. Eur. J. Oper. Res. 107(2), 389–400 (1998)zbMATHCrossRefGoogle Scholar
  120. 120.
    Basseur, M., Lemesre, J., Dhaenens, C., Talbi, E.-G.: Cooperation between branch and bound and evolutionary approaches to solve a bi-objective flow shop problem, vol. 2632 (2004)Google Scholar
  121. 121.
    Gomes, A.M., Oliveira, J.F.: Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming. Eur. J. Oper. Res. 171(3), 811–829 (2006)zbMATHCrossRefGoogle Scholar
  122. 122.
    Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity—mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)CrossRefGoogle Scholar
  123. 123.
    Valdivia-Gonzalez, A., Zaldívar, D., Fausto, F., Camarena, O., Cuevas, E., Perez-Cisneros, M.: A States of matter search-based approach for solving the problem of intelligent power allocation in plug-in hybrid electric vehicles. Energies 10(1), 92 (2017)CrossRefGoogle Scholar
  124. 124.
    Cuevas, E., González, A., Fausto, F., Zaldívar, D., Cisneros, M.P.: An optimisation algorithm based on the behaviour of locust swarms. Int. J. Bio-Inspired Comput. 7(6), 402 (2015)CrossRefGoogle Scholar
  125. 125.
    González, A., Cuevas, E., Fausto, F., Valdivia, A., Rojas, R.: A template matching approach based on the behavior of swarms of locust. Appl. Intell. 47(4) (2017)Google Scholar
  126. 126.
    Cuevas, E., González, A., Fausto, F., Zaldívar, D., Pérez-Cisneros, M.: Multithreshold segmentation by using an algorithm based on the behavior of locust swarms. Math. Probl. Eng. 2015, 26 (2015)Google Scholar
  127. 127.
    Cuevas, E., Gálvez, J., Avalos, O.: Parameter estimation for chaotic fractional systems by using the locust search algorithm. Comput. Sist. 21(2), 369–380 (2017)Google Scholar
  128. 128.
    Hinojosa, S., Oliva, D., Cuevas, E., Pajares, G., Avalos, O., Gálvez, J.: Improving multi-criterion optimization with chaos: a novel multi-objective chaotic crow search algorithm. Neural Comput. Appl. 29(8), 319–335 (2018)CrossRefGoogle Scholar
  129. 129.
    Regis, R.G.: Particle swarm with radial basis function surrogates for expensive black-box optimization. J. Comput. Sci. 5(1), 1–12 (2013)MathSciNetGoogle Scholar
  130. 130.
    Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197–3219 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Liu, B., Koziel, S., Zhang, Q.: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems. J. Comput. Sci. 12, 28–37 (2016)MathSciNetCrossRefGoogle Scholar
  132. 132.
    Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. (Ny) 237, 82–117 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Cheng, S., Shi, Y., Qin, Q., Ting, T.O., Bai, R.: Maintaining population diversity in brain storm optimization algorithm. In: Proceedings—2014 IEEE Congress Evolutionary Computation (CEC), pp. 3230–3237 (2014)Google Scholar
  134. 134.
    Yang, X.S.: Metaheuristic optimization: algorithm analysis and open problems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6630, pp. 21–32. LNCS (2011)Google Scholar
  135. 135.
    Yang, X.S.: Nature-inspired algorithms: success and challenges. Comput. Methods Appl. Sci. 38, 129–143 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Erik Cuevas
    • 1
    Email author
  • Fernando Fausto
    • 2
  • Adrián González
    • 3
  1. 1.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  3. 3.CUCEI, Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations