Aquatic Insect Sensilla: Morphology and Function

  • Manuela Rebora
  • Gianandrea Salerno
  • Silvana PiersantiEmail author


Insect extraordinary evolutionary success is due to different reasons among which their ability to receive and respond to a great variety of sensory cues thanks to their developed sense organs encompassing a high number of diversified sensilla, mainly located on their antennae. The successful invasion of lotic and lentic freshwaters by terrestrial insect required physiological constraints also regarding sensory systems. This chapter reviews the present knowledge about antennal sensory equipment in adult and aquatic stages of Ephemeroptera, Odonata, Plecoptera and Trichoptera. These insect orders have aquatic larval stages well adapted to this environment, while they move to the terrestrial habitat as adults. To be able to receive sensory cues in two very different biotopes during the young and the adult stage is a fundamental prerequisite for these insects. The data reported are mainly based on morphological investigations under scanning and transmission electron microscope (SEM, TEM), and behavioural and electrophysiological investigations (the latter available only for Odonata and Plecoptera). The chapter considers separately the main sensory capacities located on the antennae in the above-reported aquatic insect orders, in particular mechanoreception, chemoreception, thermo-hygroreception and their modifications from the aquatic to the adult stage.


Antennae Mayflies Dragonflies Stoneflies Caddisflies 


  1. Akent’eva NA (2012) Multimodal sensory organs in larvae of some insect species. Zool Zh 91:38–48Google Scholar
  2. Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annu Rev Entomol 30:273–295CrossRefGoogle Scholar
  3. Altner H, Sass H, Altner I (1977) Relationship between structure and function of antenna chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana. Cell Tissue Res 176:389–405PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alvarez M, Landeira-Dabarca A, Peckarsky B (2014) Origin and specificity of predatory fish cues detected by Baetis larvae (Ephemeroptera; Insecta). Anim Behav 96:141–149CrossRefGoogle Scholar
  5. Ansteeg O, Dettner K (1991) Chemistry and possible biological significance of secretions from a gland discharging at the 5th abdominal sternite of adult caddisflies (Trichoptera). Entomol Gen 15:303–312CrossRefGoogle Scholar
  6. Bergmann J, Löfstedt C, Ivanov VD et al (2001) Identification and assignment of the absolute configuration of biologically active methyl-branched ketones from limnephilid caddisflies. Eur J Org Chem 2001:3175–3179CrossRefGoogle Scholar
  7. Bernáth B, Szedenics G, Wildermuth H et al (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshw Biol 47:1707–1719CrossRefGoogle Scholar
  8. Brönmark C, Hansson L-A (2000) Chemical communication in aquatic systems: an introduction. Oikos 88:103–109CrossRefGoogle Scholar
  9. Caillère L (1964) Contribution au comportement de capture des larves d’Agrion splendens Harris 1782 (Odonates, Zygopteres): role des antennes dans le declenchement du reflexe de capture. 89° Congr Nat Soc Sav Lyon 435–442Google Scholar
  10. Caillère L (1965) Description du reflexe de capture chez la larve d’Agrion splendens Harris 1782 (Insectes, Odonates, Zygopteres). Bull Mens Soc Linn Lyon 34:424–434CrossRefGoogle Scholar
  11. Caillère L (1968) Role des organes des sens dans le comportement de capture chez la larve d’Agrion splendens Harris 1782 (Insectes, Odonates, Zygopteres). Bull Mens Soc Linn Lyon 37:25–34CrossRefGoogle Scholar
  12. Chivers DP, Wisenden BD, Smith RJF (1996) Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Anim Behav 52:315–320CrossRefGoogle Scholar
  13. Corbet PS (1999) Dragonflies behaviour and ecology of Odonata. Harley Books, ColchesterGoogle Scholar
  14. Crespo JG (2011) A review of chemosensation and related behavior in aquatic insects. J Insect Sci 11:1–39CrossRefGoogle Scholar
  15. Crumrine PW (2006) Age specific behavioral responses of odonate larvae to chemical and visual cues from predators. J Fresh Ecol 21:9–16CrossRefGoogle Scholar
  16. Dacks AM, Christensen TA, Hildebrand JG (2006) Phylogeny of a serotonin immunoreactive neuron in the primary olfactory center of the insect brain. J Comp Neurol 498:727–746PubMedCrossRefPubMedCentralGoogle Scholar
  17. Davis EE, Sokolove PG (1975) Temperature responses of antennal receptors of the mosquito Aedes aegypti. J Comp Physiol 96:223–236CrossRefGoogle Scholar
  18. Derby CD, Kozma MT, Senatore A et al (2016) Molecular mechanisms of reception and perireception in crustacean chemoreception: a comparative review. Chem Sens 41:381–398CrossRefGoogle Scholar
  19. Devarakonda R, Barth FG, Humphrey JAC (1996) Dynamics of arthropod filiform hairs. IV. Hair motion in air and water. Philos Trans R Soc Lond Ser B Biol Sci 351:933–946CrossRefGoogle Scholar
  20. Dijkstra KD, Monaghan MT, Pauls SU (2014) Freshwater biodiversity and aquatic insect diversification. Annu Rev Entomol 59:143–163PubMedCrossRefPubMedCentralGoogle Scholar
  21. Duffield RM (1981) 2-Nonanol in the exocrine secretion of the Nearctic caddisfly, Rhyacophila fuscula (Walker) (Rhyacophilidae: Trichoptera). Proc Entomol Soc Wash 83:60–63Google Scholar
  22. Duffield RM, Blum MS, Wallace JB et al (1977) Chemistry of the defensive secretion of the caddisfly Pycnopsyche scabripennis (Trichoptera: Limnephilidae). J Chem Ecol 3:649–656CrossRefGoogle Scholar
  23. Ehnbom K (1948) Studies on the central and sympathetic nervous system and some sense organs in the head of neuroptid insects. Opuscula Entomol Suppl 8:1–80Google Scholar
  24. Enjin A (2017) Humidity sensing in insects-from ecology to natural processing. Curr Opin Insect Sci 24:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  25. Enjin A, Zaharieva EE, Frank DD et al (2016) Humidity sensing in Drosophila. Curr Biol 26:1352–1358PubMedPubMedCentralCrossRefGoogle Scholar
  26. Farris SM (2005) Development organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect. Evol Dev 7:150–159PubMedCrossRefPubMedCentralGoogle Scholar
  27. Faucheux MJ (2007) Multiporous and aporous sensilla on the larval antennae of the relict dragonfly Epiophlebia superstes (Selys, 1889) (Odonata: Anisozygoptera: Epiophlebiidae). Bull Inst R Sci Nat Belg Entomol 77:121–128Google Scholar
  28. Faucheux MJ, Meurgey F (2007) Sensilles chètiformes et filiformes sur les antennes larvaires d’Uropelata chiltoni Tillyard, 1930 (Odonata, Anisoptera, Petaluridae). Martinia 23:127–132Google Scholar
  29. Faucheux MJ, Meurgey F (2009) Les sensilles antennaires d’une larve fouisseuse, Ophiogomphus cecilia (Geoffroy in Fourcroy, 1785) (Odonata, Anisoptera, Gomphidae). Martinia 25:85–92Google Scholar
  30. Frati F, Piersanti S, Rebora M et al (2015) Scent of a Dragonfly: sex recognition in a polymorphic Coenagrionid. PLoS One 10:e0136697. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Frati F, Piersanti S, Rebora M et al (2016) Volatile cues can drive oviposition behaviour in Odonata. J Insect Physiol 91-92:34–38PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gaino E, Rebora M (1996) Fine structure of flat-tipped antennal sensilla in three species of mayflies (Ephemeroptera). Invertebr Biol 115:145–149CrossRefGoogle Scholar
  33. Gaino E, Rebora M (1997) Antennal cuticular sensilla in some mayflies (Ephemeroptera). In: Landolt P, Sartori M (eds) Ephemeroptera & Plecoptera: Biology-Ecology-Systematics. MTL, Fribourg, pp 317–325Google Scholar
  34. Gaino E, Rebora M (1998) Ultrastructure of the antennal sensilla of the mayfly Baetis rhodani (Pictet) (Ephemeroptera: Baetidae). Int J Insect Morphol Embryol 27:143–149CrossRefGoogle Scholar
  35. Gaino E, Rebora M (1999) Larval antennal sensilla in water-living insects. Microsc Res Tech 47:440–457PubMedCrossRefGoogle Scholar
  36. Gaino E, Rebora M (2001) Apical antennal sensilla in nymphs of Libellula depressa (Odonata: Libellulidae). Invertebr Biol 120:162–169CrossRefGoogle Scholar
  37. Gaino E, Piersanti S, Rebora M (2007) Ultrastructural organization of the larval spiracles in Libellula depressa L. (Anisoptera: Libellulidae). Odonatologica 36:373–379Google Scholar
  38. Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420PubMedCrossRefGoogle Scholar
  39. Gall BG, Brodie Jr ED (2009) Behavioral avoidance of injured conspecific and predatory chemical stimuli by larvae of the aquatic caddisfly Hesperophylax occidentalis. Can J Zool 87:1009–1015CrossRefGoogle Scholar
  40. Gallio M, Ofstad TA, Macpherson LJ et al (2011) The coding of temperature in the Drosophila brain. Cell 144:614–624PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gullan PJ, Cranston PS (2006) The insects: an outline of entomology. Chapman & Hall, LondonGoogle Scholar
  42. Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:428–439PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hansson B, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hardersen S (2007) Telemetry of Anisoptera after emergence- first results (Odonata). Int J Odonatol 10:189–202CrossRefGoogle Scholar
  45. Humphrey JAC, Devarakonda R, Iglesias J et al (1993) Dynamics of arthropod filiform hairs. I. Mathematical modelling of the hair and air motions. Philos Trans R Soc B 340:423–444CrossRefGoogle Scholar
  46. Hunger T, Steinbrecht RA (1998) Functional morphology of a double-walled multiporous olfactory sensillum: the sensillum coeloconicum of Bombyx mori (Insecta. Lepidoptera). Tissue Cell 30:14–29PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ivanov VD, Melnitsky SI (2011) Structure and morphological types of the antennal olfactory sensilla in Phryganeidae and Limnephilidae (Insecta: Trichoptera). Zoosymposia 5:210–234Google Scholar
  48. Ivanov VD, Melnitsky SI (2016) Diversity of the olfactory sensilla in caddis-flies (Trichoptera). Zoosymposia 10:224–233Google Scholar
  49. Jewett DK, Brigham DL, Bjostad LB (1996) Hesperophylax occidentalis (Trichoptera: Limnephilidae): electroantennogram structure-activity study of sex pheromone component 6-methylnonan-3-one. J Chem Ecol 22:123–137PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kapoor NN (1985) External morphology and distribution of the antennal sensilla of the stonefly, Paragnetina media (Walker) (Plecoptera: Perlidae). Int J Insect Morphol Embryol 14:273–280CrossRefGoogle Scholar
  51. Kapoor NN (1987) Fine structure of the coniform sensillar complex on the antennal flagellum of the stonefly nymph Paragnetina media (Plecoptera: Perlidae). Can J Zool 65:1827–1832CrossRefGoogle Scholar
  52. Kapoor NN (1991) Antennal campaniform and coeloconic sensilla of the stonefly nymph, Paragnetina media (Walker) (Plecoptera: Perlidae). In: Alba-Tercedor J, Sanchez-Ortega A (eds) Overview and strategies of Ephemeroptera and Plecoptera. Sandhill Crane Press, Inc., Gainesville, FL, pp 39–46Google Scholar
  53. Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286PubMedPubMedCentralGoogle Scholar
  55. Kriska G, Bernáth B, Horváth G (2007) Positive polarotaxis in a mayfly that never leaves the water surface: Polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94:148–154PubMedCrossRefPubMedCentralGoogle Scholar
  56. Laverack MS (1962) Responses of cuticular sense organs of the lobster, Homarus vulgaris. II. Hair-fan organs as pressure receptors. Comp Biochem Physiol 6:137–145CrossRefGoogle Scholar
  57. Löfstedt C, Hansson BS, Petersson E et al (1994) Pheromonal secretions from glands on the 5th abdominal sternite of hydropsychid and rhyacophilid caddisflies (Trichoptera). J Chem Ecol 20:153–170PubMedCrossRefPubMedCentralGoogle Scholar
  58. Löfstedt C, Bergmann J, Francke W et al (2008) Identification of a sex pheromone produced by sternal glands in females of the (Trichoptera) caddisfly Molanna angustata Curtis (Trichoptera, Molannidae). J Chem Ecol 34:220–228PubMedPubMedCentralCrossRefGoogle Scholar
  59. Loftus R (1976) Temperature-dependent dry receptor on antenna of Periplaneta. J Comp Physiol 111:153–170CrossRefGoogle Scholar
  60. Loftus R (1978) Peripheral thermal receptors. In: Ali MA (ed) Sensory ecology: reviews and perspectives, NATO Advanced Study Institutes Series, vol 18. Plenum, New York/London, pp 439–466CrossRefGoogle Scholar
  61. Ma ZS, Krings AW (2009) Insect sensory systems inspired computing and communications. Ad Hoc Netw 7:742–755CrossRefGoogle Scholar
  62. McIntosh AR, Peckarsky BL (1996) Differential behavioural responses of mayflies from streams with and without fish to trout odour. Freshw Biol 35:141–148CrossRefGoogle Scholar
  63. McIntosh AR, Peckarsky BL (2004) Are mayfly anti-predator responses to fish odour proportional to risk? Arch Hydrobiol 160:145–151CrossRefGoogle Scholar
  64. McIntosh AR, Peckarsky BL, Taylor BW (1999) Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration. Oecologia 118:256–264PubMedCrossRefPubMedCentralGoogle Scholar
  65. Melnitsky SI, Ivanov VD (2011) Structure and localization of sensilla on antennaeof caddisflies (Insecta: Trichoptera). J Evol Biochem Physiol 47:593–602CrossRefGoogle Scholar
  66. Melnitsky SI, Ivanov VD (2016) Structure of the antennal olfactory sensilla in the genus Molanna (Trichoptera: Molannidae). Zoosymposia 10:292–300Google Scholar
  67. Melnitsky SI, Vladimir D, Ivanov VD et al (2018) Comparison of sensory structures on the antenna of different species of Philopotamidae (Insecta: Trichoptera). Arthropod Struct Dev 47:45–55PubMedCrossRefPubMedCentralGoogle Scholar
  68. Meritt DJ (2007) The organule concept of insect sense organs: sensory transduction and organule evolution. Adv Insect Physiol 33:192–242CrossRefGoogle Scholar
  69. Meurgey F, Faucheux MJ (2006a) Vibroreceptors and proprioceptors on the larval antennae of Erythromma lindenii (Sélys) (Zygoptera: Coenagrionidae). Odonatologica 35:255–264Google Scholar
  70. Meurgey F, Faucheux MJ (2006b) Organes sensoriels des antennes de la larve de Chalcolestes viridis (Van der Linden, 1825) (Odonata, Zygoptera, Lestidae). Martinia 22:167–171Google Scholar
  71. Michels J, Appel E, Gorb SN (2016) Functional diversity of resilin in Arthropoda. Beilstein J Nanotech 7:1241–1259CrossRefGoogle Scholar
  72. Missbach C, Dweck HKM, Vogel H et al (2014) Evolution of insect olfactory receptors. elife 3:1–22Google Scholar
  73. Mortensen L, Richardson JML (2008) Effects of chemical cues on foraging in damselfly larvae, Enallagma antennatum. J Insect Behav 21:285–295CrossRefGoogle Scholar
  74. Murlis J, Elkinton JS, Cardé RT (2003) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532CrossRefGoogle Scholar
  75. Nishikawa M, Yokohari F, Ishibashi T (1992) Response characteristics of two types of cold receptors on the antennae of the cockroach, Periplaneta Americana L. J Comp Physiol A 171:299–307CrossRefGoogle Scholar
  76. Ode PR, Wissinger S (2006) Interaction between chemical and tactile cues in mayfly detection of stoneflies. Freshw Biol 30:351–357CrossRefGoogle Scholar
  77. Okano JI, Tayasu I, Nakano SI et al (2017) Differential responses of two ecologically similar case-bearing caddisfly species to a fish chemical cue: implications for a coexistence mechanism. Zool Sci 34:461–467PubMedCrossRefPubMedCentralGoogle Scholar
  78. Peckarsky BL, Wilcox RS (1989) Stonefly nymphs use hydrodynamic cues to discriminate between prey. Oecologia 79:265–270PubMedCrossRefPubMedCentralGoogle Scholar
  79. Piersanti S, Rebora M (2018) The antennae of damselfly larvae. Arthropod Struct Dev 47:36–44PubMedCrossRefPubMedCentralGoogle Scholar
  80. Piersanti S, Rebora M, Salerno G et al (2007) Behavioural strategies of the larval dragonfly Libellula depressa (Odonata: Libellulidae) in drying pools. Ethol Ecol Evol 19:127–136CrossRefGoogle Scholar
  81. Piersanti S, Rebora M, Gaino E (2010) A scanning electron microscope study of the antennal sensilla in adult Zygoptera. Odonatologica 39:235–241Google Scholar
  82. Piersanti S, Rebora M, Almaas TJ et al (2011) Electrophysiological identification of thermo- and hygro-sensitive receptor neurons on the antennae of the dragonfly Libellula depressa. J Insect Physiol 57:1391–1398PubMedCrossRefPubMedCentralGoogle Scholar
  83. Piersanti S, Frati F, Conti E et al (2014a) The sense of smell in Odonata: an electrophysiological screening. J Insect Physiol 70:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  84. Piersanti S, Frati F, Conti E et al (2014b) First evidence of the use of olfaction in Odonata behaviour. J Insect Physiol 62:26–31PubMedCrossRefPubMedCentralGoogle Scholar
  85. Piersanti S, Rebora M, Lopez Rodriguez MJ et al (2017) A comparison between the adult antennal sensilla of the cavernicolous stonefly Protonemoura gevi and other epigean Protonemura species (Plecoptera: Nemouridae) in a biological context. Ann Soc Entomol Fr 53:47–54CrossRefGoogle Scholar
  86. Rebora M, Gaino E (2008) The antennal sensilla of the nymph of Ephemera danica. In: Hauer FR, Stanford JA, Newell RL (eds) International advances in the ecology, zoogeography and systematics of mayflies and stoneflies. University of California Press, Berkeley, CA, pp 307–312Google Scholar
  87. Rebora M, Piersanti S, Gaino E (2004) Visual and mechanical cues in prey detection by the larva of Libellula depressa (Odonata: Libellulidae). Ethol Ecol Evol 16:133–144CrossRefGoogle Scholar
  88. Rebora M, Piersanti S, Salerno G, Conti E, Gaino E (2007a) Water deprivation tolerance and humidity response in a larval dragonfly: a possible adaptation for survival in drying ponds. Physiol Entomol 32:121–126CrossRefGoogle Scholar
  89. Rebora M, Piersanti S, Almaas TJ et al (2007b) Hygroreceptors in the larva of Libellula depressa (Odonata: Libellulidae). J Insect Physiol 53:550–558PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rebora M, Piersanti S, Gaino E (2008) The antennal sensilla of the adult of Libellula depressa (Odonata: Libellulidae). Arthropod Struct Dev 37:504–510PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rebora M, Piersanti S, Gaino E (2009a) A comparative investigation of the antennal sensilla of adult Anisoptera. Odonatologica 38:329–340Google Scholar
  92. Rebora M, Piersanti S, Gaino E (2009b) The antennal sensilla of adult mayflies: Rhithrogena semicolorata as a case study. Micron 40:571–576PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rebora M, Piersanti S, Gaino E (2010) The antennal sensory function in the oldest pterygote insects: an ultrastructural overview. In: Méndez Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. Formatex Research Center, Badajoz, pp 137–145Google Scholar
  94. Rebora M, Salerno G, Piersanti S, Dell’Otto A, Gaino E (2012) Olfaction in dragonflies: electrophysiological evidence. J Insect Physiol 58:270–277PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rebora M, Dell’Otto A, Rybak J et al (2013) The antennal lobe of Libellula depressa (Odonata, Libellulidae). Zoology 116:205–214PubMedCrossRefPubMedCentralGoogle Scholar
  96. Rebora M, Piersanti S, Salerno G, Gorb S (2015) The Antenna of a burrowing dragonfly larva, Onychogomphus forcipatus (Anisoptera,Gomphidae). Arthropod Struct Dev 44:595–603PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rebora M, Tierno de Figueroa JM, Piersanti S (2016) Antennal sensilla of the stonefly Dinocras cephalotes (Plecoptera: Perlidae). Arthropod Struct Dev 45:552–561CrossRefGoogle Scholar
  98. Rebora M, Piersanti S, Frati F et al (2017) Antennal responses to volatile organic compounds in a stonefly. J Insect Physiol 98:231–2376CrossRefGoogle Scholar
  99. Rebora M, Frati F, Piersanti S et al (2018) Field tests of multiple sensory cues in sex recognition and harassment of a colour polymorphic damselfly. Anim Behav 136:127–136CrossRefGoogle Scholar
  100. Schaller D (1982) Structural and functional classification of antennal sensilla of the cockroach, Leucophea maderae. Cell Tissue Res 225:129–142PubMedCrossRefPubMedCentralGoogle Scholar
  101. Schneider D (1964) Insect antennae. Annu Rev Entomol 9:103–122CrossRefGoogle Scholar
  102. Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540CrossRefGoogle Scholar
  103. Scrimgeour GJ, Culp JM, Cash KJ (1994) Anti-predator responses of mayfly larvae to conspecific and predator stimuli. J N Am Benthol Soc 13:299–309CrossRefGoogle Scholar
  104. Shimozawa T, Kanou M (1984) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155:495–505CrossRefGoogle Scholar
  105. Siepielski AM, Fallon E, Boersma K (2016) Predator olfactory cues generate a foraging–predation trade-off through prey apprehension. R Soc Open Sci 3:150537PubMedPubMedCentralCrossRefGoogle Scholar
  106. Slifer EH (1977) Sense organs on the antennal flagellum of Mayflies (Ephemeroptera). J Morphol 153:355–362PubMedCrossRefGoogle Scholar
  107. Slifer EH, Sekhon SS (1971) Structures on the antennal flagellum of a caddisfly, Frenesia missa (Trichoptera, Limnephilidae). J Morphol 135:373–388PubMedCrossRefGoogle Scholar
  108. Slifer EH, Sekhon SS (1972) Sense organs on the antennal flagella of damselflies and dragonflies (Odonata). Int J Insect Morphol Embryol 1:289–300CrossRefGoogle Scholar
  109. Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245CrossRefGoogle Scholar
  110. Steinbrecht RA (1998) Bimodal thermo-and hygrosensitive sensilla. In: Harrison FW, Locke M (eds) Microscopic Anatomy of Invertebrates 11B. Wiley-Liss, New York, pp 405–422Google Scholar
  111. Stoks R (2001) Food stress and predator induced stress shape developmental performance in a damselfly. Oecologia 127:222–229PubMedCrossRefPubMedCentralGoogle Scholar
  112. Strausfeld NJ, Hansen L, Li Y et al (1998) Evolution, discovery and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37PubMedPubMedCentralGoogle Scholar
  113. Strausfeld NJ, Sinakevitch I, Brown SM et al (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291PubMedPubMedCentralCrossRefGoogle Scholar
  114. Suhling F, Müller O (1996) Die Flußjungfern Europas. Magdeburg: Westarp-Wiss. Spektrum Akad. Verlag, HeidelbergGoogle Scholar
  115. Suhling F, Sahlen G, Gorb S et al (2015) Order Odonata. In: Thorp J, Rogers DC (eds) Ecology and general biology: Thorp and Covich’s Freshwater Invertebrates. Academic Press, New York, pp 893–932CrossRefGoogle Scholar
  116. Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). I Mechanical properties of the receptors hairs. J Comp Physiol 118:13–31CrossRefGoogle Scholar
  117. Thurm U (1965) An insect mechanoreceptor. I. Fine structure and adequate stimulus. Cold Spring Harb Symp Quant Biol 30:75–82PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tichy H, Loftus R (1996) Hygroreceptors in insects and a spider: humidity transduction models. Naturwissenschaften 83:255–263Google Scholar
  119. Tichy H, Hellwig M, Kallina W (2017) Revisiting theories of humidity transduction: a focus on electrophysiological data. Front Physiol 8:1–5CrossRefGoogle Scholar
  120. Tierno de Figueroa JM, Luzon-Ortega JM, Sànchez-Ortega A (1998) Imaginal biology of Hemimelaena flaviventris (Pictet, 1841) (Plecoptera, Perlodidae). Ann Zool Fenn 35:225–230Google Scholar
  121. Tozer W (1982) External antennal morphology of the adult and larva of Nectopsyche albida (Walker) (Trichoptera: Leptoceridae). Freshw Invertebr Biol 1:35–43CrossRefGoogle Scholar
  122. Tuchina O, Groh KG, Talarico G et al (2014) Morphology and histochemistry of the aesthetasc associated epidermal glands in terrestrial hermit crabs of the genus Coenobita (Decapoda: Paguroidea). PLoS One 9(5):e96430PubMedPubMedCentralCrossRefGoogle Scholar
  123. Tuthill JC, Wilson RI (2016) Mechanosensation and adaptive motor control in insects. Curr Biol 26(20):1022–1038CrossRefGoogle Scholar
  124. Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159PubMedCrossRefPubMedCentralGoogle Scholar
  125. Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27:97–117CrossRefGoogle Scholar
  126. Wiese K (1976) Mechanoreceptors for near-field water displacements in crayfish. J Neurophysiol 39:816–833PubMedCrossRefPubMedCentralGoogle Scholar
  127. Williams DD (1987) A laboratory study of predator-prey interactions of stoneflies and mayflies. Freshw Biol 17:471–490CrossRefGoogle Scholar
  128. Wisenden BD (2000) Olfactory assessment of predation risk in the aquatic environment. Philos Trans R Soc Lond Ser B Biol Sci 355(1401):1205–1208CrossRefGoogle Scholar
  129. Wisenden BD, Chivers DP, Smith RJF (1997) Learned recognition of predation risk by Enallagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues. J Chem Ecol 23:137–151CrossRefGoogle Scholar
  130. Yao CA, Ignell R, Carlson JR (2005) Chemosensory Coding by Neurons in the Coeloconic Sensilla of the Drosophila Antenna. J Neurosci 25:8359–8367PubMedCrossRefPubMedCentralGoogle Scholar
  131. Yokohari F (1999) Hygro- and thermoreceptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors: dynamic morphology in relation to function. Springer, Berlin, pp 191–210Google Scholar
  132. Yokohari F, Tominaga Y, Ando M et al (1975) An antennal hygroreceptive sensillum of the cockroach. J Electron Microsc 24:291–293Google Scholar
  133. Yuvaraj JK, Andersson MN, Anderbrant O et al (2018) Diversity of olfactory structures: a comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron 111:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  134. Zacharuk R (1980) Ultrastructure and function of insect chemosensilla. Annu Rev Entomol 25:27–48CrossRefGoogle Scholar
  135. Zacharuk R (1985) Antennae and sensilla. In: Gilbert LI, Kerkut GA (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon Press, Oxford, pp 1–70Google Scholar
  136. Zacharuk R, Ru-Siu Yin L, Blue SG (1971) Fine structure of the antenna and its sensory cone in larvae of Aedes aegypti (L.). J Morphol 135:273–298PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zhou X, Frandsen PB, Holzenthal RW et al (2016) The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life. Phil Trans R Soc B 371:20160025PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manuela Rebora
    • 1
  • Gianandrea Salerno
    • 2
  • Silvana Piersanti
    • 1
    Email author
  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversity of PerugiaPerugiaItaly
  2. 2.Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversity of PerugiaPerugiaItaly

Personalised recommendations