Advertisement

The Biotic Environment: Multiple Interactions in an Aquatic World

  • Gabriela C. Mendes
  • Guilherme Gonzaga da Silva
  • Leonardo Samuel Ricioli
  • Rhainer Guillermo
Chapter

Abstract

The distribution and diversity of aquatic insects is a result of their interactions with the environment and other organisms. Right from the egg to larval and adult stages, insects must deal with a great biodiversity of natural enemies and mutualists. Such relationships evolved for millions of years in such a way that aquatic insects developed behavioral, ecological, and evolutionary strategies to cope with predation, parasitism, and competition. In the same way, they have joined forces with other organisms to solve problems, such as the interaction with gut bacteria to digest cellulose. These strategies and selective forces not only predict behavior and occurrence of aquatic insects, but also shape their diversity, community structures, and population dynamics. In this chapter, we sought to bring to the reader a useful source of information and a background for future studies. Although our current knowledge on species interactions in freshwater habitats allows us to discuss several topics, there is an open field of possibilities and gaps to be addressed in future research.

Keywords

Ecological interactions Biotic factors Aquatic animals Trophic webs Networks Trophic cascades 

References

  1. Allan JD (1995) Predation and its consequences, Stream Ecology. Springer, Dordrecht, pp 163–185Google Scholar
  2. Akira Shimizu, (1992) Nesting behavior of the semi-aquatic spider wasp,Anoplius eous, which transports its prey on the surface film of water (Hymenoptera, Pompilidae). Journal of Ethology 10 (2):85-102CrossRefGoogle Scholar
  3. Amelia K. Ward, Clifford N. Dahm, Kenneth W. Cummins, NOSTOC (CYANOPHYTA) PRODUCTIVITY IN OREGON STREAM ECOSYSTEMS: INVERTEBRATE INFLUENCES AND DIFFERENCES BETWEEN MORPHOLOGICAL TYPES1. Journal of Phycology 21 (2):223-227Google Scholar
  4. Anderson NH, Cargill AS (1987) Nutritional ecology of aquatic detritivorous insects. Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates, 903–925Google Scholar
  5. Anderson RA, Koellaf JC, Hurd H (1999) The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc R Soc Lond B Biol Sci 266(1430):1729–1733CrossRefGoogle Scholar
  6. Andrade MR, Albeny-Simões DANIEL, Breaux JA, Juliano SA, Lima E (2017) Are behavioural responses to predation cues linked across life cycle stages? Ecol Entomol 42(1):77–85CrossRefGoogle Scholar
  7. Arsuffi TL, Suberkropp K (1988) Effects of fungal mycelia and enzymatically degraded leaves on feeding and performance of caddisfly (Trichoptera) larvae. J N Am Benthol Soc 7(3):205–211CrossRefGoogle Scholar
  8. Auld JR, Relyea RA (2011) Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol Ecol 25(1):189–202CrossRefGoogle Scholar
  9. Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffman AA (2016) Fitness of wAlbB Wolbachia Infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg 94(3):507–516PubMedPubMedCentralCrossRefGoogle Scholar
  10. Babbitt K, Jordan F (1996) Predation on Bufo terrestris tadpoles: effects of cover and predator identity. Copeia 1996:485–488CrossRefGoogle Scholar
  11. Bartlett, L., & Connor, E. F. (2014). Exogenous phytohormones and the induction of plant galls by insects. Arthropod-Plant Interactions, 8(4), 339-348.Google Scholar
  12. Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr 36(6):1078–1090CrossRefGoogle Scholar
  13. Balian EV, Segers H, Leveque C, Martens K (2008) An introduction to the freshwater animal diversity assessment (FADA) project. Hydrobiologia 595:3–8CrossRefGoogle Scholar
  14. Bärlocher F (1985) The role of fungi in the nutrition of stream invertebrates. Bot J Linn Soc 91(1–2):83–94CrossRefGoogle Scholar
  15. Behringer DC, Karvonen A, Bojko J (2018) Parasite avoidance behaviours in aquatic environments. Philos Trans R Soc B Biol Sci 373(1751)CrossRefGoogle Scholar
  16. Benard MF (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst 35:651–673CrossRefGoogle Scholar
  17. Benfield EF (1974) Autohemorrhage in two stoneflies (Plecoptera) and its effectiveness as a defense mechanism. Ann Entomol Soc Am 67(5):739–742CrossRefGoogle Scholar
  18. Bennett, A. M. (2007). Global diversity of hymenopterans (Hymenoptera; Insecta) in freshwater. In Freshwater Animal Diversity Assessment (pp. 529-534). Springer, Dordrecht.Google Scholar
  19. Boonsoong B (2016) Phoretic associations between Nanocladius asiaticus (Diptera, Chironomidae) and its hosts Gestroiella (Heteroptera, Naucoridae) and Euphaea masoni (Odonata, Euphaeidae) in streams in Western Thailand. Ann Limnol Int J Limnol 52:163–169. EDP SciencesCrossRefGoogle Scholar
  20. Böttger K (1972) Biological and ecological studies on the life cycle of freshwater-mites II. The life cycle of Limnesia maculata and Unionicola crassipes. Int Rev Ges Hydrobiol Hydrogr 57(2):263–319CrossRefGoogle Scholar
  21. Böttger K (1976) Types of parasitism by larvae of water mites (Acari: Hydrachnellae). Freshw Biol 6(6):497–500CrossRefGoogle Scholar
  22. Bronstein JL (2009) The evolution of facilitation and mutualism. J Ecol 97(6):1160–1170CrossRefGoogle Scholar
  23. Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655CrossRefGoogle Scholar
  24. Chae J-s, Pusterla N, Johnson E, DeRock E, Lawler SP, Madigan JE (2000) Infection of aquatic insects with trematode metacercariae carrying Ehrlichia Risticii, the cause of potomac horse fever. J Med Entomol 37(4):619–625PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chase J (1999) Food web effects of prey size refuge: variable interactions and alternative stable equilibria. Am Nat 154:559–570PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chung N, Suberkropp K (2009) Contribution of fungal biomass to the growth of the shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae). Freshw Biol 54(11):2212–2224CrossRefGoogle Scholar
  27. Coccia C, Boyero L, Green AJ (2014) Can differential predation of native and alien corixids explain the success of Trichocorixa verticalis verticalis (Hemiptera, Corixidae) in the Iberian Peninsula? Hydrobiologia 734(1):115–123CrossRefGoogle Scholar
  28. Coon KL, Brown MR, Strand MR (2016) Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors 9(1):375PubMedPubMedCentralCrossRefGoogle Scholar
  29. Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Harley Books, Colchester, p 829Google Scholar
  30. Córdoba-Aguilar A, Munguía-Steyer R (2013) The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. PLoS One 8(10):e76246.  https://doi.org/10.1371/journal.pone.0076246 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10(1):147–172CrossRefGoogle Scholar
  32. Dahl J, Peckarsky BL (2002) Induced morphological defenses in the wild: predator effects on a mayfly, Drunella coloradensis. Ecology 83(6):1620–1634CrossRefGoogle Scholar
  33. Del-Claro K, Torezan-Silingardi HM (2012) Ecologia das interações plantas-animais: Uma abordagem ecológico-evolutiva. Technical Books EditoraGoogle Scholar
  34. Del-Claro K, Rico-Gray V, Torezan-Silingardi HM, Alves-Silva E, Fagundes R, Lange D, Dáttilo W, Vilela AA, Aguirre A, Rodriguez-Morales D (2016) Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insect Soc 63(2):207–221CrossRefGoogle Scholar
  35. DeWitt TJ (1998) Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life history in a freshwater snail. J Evol Biol 11(4):465–480CrossRefGoogle Scholar
  36. Duffield RM, Blum MS, Wallace JB, Lloyd HA, Regnier FE (1977) Chemistry of the defensive secretion of the caddisfly Pycnopsyche scabripennis (Trichoptera: Limnephilidae). J Chem Ecol 3(6):649–656CrossRefGoogle Scholar
  37. Elliott JM (1982) The life cycle and spatial distribution of the aquatic parasitoid Agriotypus armatus (Hymenoptera: Agriotypidae) and its caddis host Silo pallipes (Trichoptera: Goeridae). J Anim Ecol 51:923–941CrossRefGoogle Scholar
  38. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408(6812):578–580PubMedCrossRefPubMedCentralGoogle Scholar
  39. Esch GW, Barger MA, Fellis KJ (2002) The transmission of digenetic trematodes: style, elegance, complexity. Integr Comp Biol 42(2):304–312PubMedCrossRefPubMedCentralGoogle Scholar
  40. Eveland LL, Bohenek JR, Silberbush A, Resetarits WJ Jr. (2016) Detection of fish and newt kairomones by ovipositing mosquitoes. Chemical Signals in Vertebrates 13 (ed. by B. A.)Google Scholar
  41. Feitosa MCB, Querino RB, Hamada N (2016) Association of Anagrus amazonensis Triapitsyn, Querino & Feitosa (Hymenoptera, Mymaridae) with aquatic insects in upland streams and floodplain lakes in central Amazonia, Brazil. Rev Brasil Entomol 60:267–269CrossRefGoogle Scholar
  42. Ferrington LC Jr, Lichtwardt RW, Hayford B, Williams MC (2005) Symbiotic Harpellales (Trichomycetes) in Tasmanian aquatic insects. Mycologia 97(1):254–262PubMedCrossRefGoogle Scholar
  43. Fincke OM (1984) Giant damselflies in a tropical forest: reproductive biologyof Megaloprepus coerulatus with notes on Mecistogaster (Zygoptera: Pseudostigmatidae). Adv Odonatol 2(1):13–27Google Scholar
  44. Fincke OM (1994) Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying. Oecologia 100(1–2):118–127PubMedCrossRefPubMedCentralGoogle Scholar
  45. Fusari, L. M., Roque, F. D. O., & Hamada, N. (2014). Systematics of Oukuriella Epler, 1986, including a revision of the species associated with freshwater sponges. Insect Systematics & Evolution, 45(2), 117-157.Google Scholar
  46. E. S. Gabitzsch, C. D. Blair, B. J. Beaty, (2006) Effect of La Crosse Virus Infection on Insemination Rates in Female Aedes triseriatus (Diptera: Culicidae). Journal of Medical Entomology 43 (5):850-852PubMedCrossRefPubMedCentralGoogle Scholar
  47. Godwin CM, Whitaker EA, Cotner JB (2017) Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria. Ecology 98(3):820–829PubMedCrossRefPubMedCentralGoogle Scholar
  48. González-Tokman D, Córdoba-Aguilar A, González-Santoyo I, Lanz-Mendoza H (2011) Infection effects on feeding and territorial behaviour in a predatory insect in the wild. Anim Behav 81(6):1185–1194CrossRefGoogle Scholar
  49. Grabner DS (2017) Hidden diversity: parasites of stream arthropods. Freshw Biol 62:52–64CrossRefGoogle Scholar
  50. Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38(1):251–273CrossRefGoogle Scholar
  51. Guillermo-Ferreira R, Del-Claro K (2011) Oviposition site selection in Oxyagrion microstigma Selys, 1876 (Odonata: Coenagrionidae) is related to aquatic vegetation structure. Int J Odonatol 14(3):275–279CrossRefGoogle Scholar
  52. Guillermo-Ferreira R, Vilela DS (2013) New records of Forcipomyia (Pterobosca) incubans (Diptera: Ceratopogonidae) parasitizing wings of Odonata in Brazil. Biota Neotrop 13(1):360–362CrossRefGoogle Scholar
  53. Hayashi M, Ohba S-Y (2018) Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biol J Linn Soc 125(2):315–320CrossRefGoogle Scholar
  54. Henrikson B-I (1988) The absence of antipredator behavior in the larvae of Leucorrhinia dubia (Odonata) and the consequences for their distribution. Oikos:179–183Google Scholar
  55. Hering D, Plachter H (1997) Riparian ground beetles (Coleoptera, Carabidae) preying on aquatic invertebrates: a feeding strategy in alpine floodplains. Oecologia 111(2):261–270PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hirayama H, Kasuya E (2009) Oviposition depth in response to egg parasitism in the water strider: high-risk experience promotes deeper oviposition. Anim Behav 78(4):935–941CrossRefGoogle Scholar
  57. Hirayama H, Kasuya E (2015) Parasitoid avoidance behavior is not triggered by airborne cues in a semi-aquatic bug. Hydrobiologia 745:195–200CrossRefGoogle Scholar
  58. Hirayama T, Yoshida T, Nagasaki O (2014) The life history and host-searching behaviour of the aquatic parasitoid wasp Apsilops japonicus (Hymenoptera: Ichneumonidae), a parasitoid of the aquatic moth Neoshoenobia testacealis (Lepidoptera: Crambidae). J Nat Hist 48(15–16):959–967CrossRefGoogle Scholar
  59. Honkavaara J, Rantala MJ, Suhonen J (2009) Mating status, immune defence, and multi-parasite burden in the damselfly Coenagrion armatum. Entomol Exp Appl 132(2):165–171CrossRefGoogle Scholar
  60. Hopkins GR, Gall BG, Brodie ED (2011) Ontogenetic shift in efficacy of antipredator mechanisms in a top aquatic predator, Anax junius (Odonata: Aeshnidae). Ethology 117(12):1093–1100CrossRefGoogle Scholar
  61. Hoverman, J. T., Auld, J. R., & Relyea, R. A. (2005). Putting prey back together again: integrating predator-induced behavior, morphology, and life history. Oecologia, 144(3), 481-491.Google Scholar
  62. Ingley SJ, Bybee SM, Tennessen KJ, Whiting MF, Branham MA (2012) Life on the fly: phylogenetics and evolution of the helicopter damselflies (Odonata, Pseudostigmatidae). Zool Scr 41(6):637–650CrossRefGoogle Scholar
  63. Jackson DJ (1966) Observations on the Biology of Caraphractus Cinctus Walker (Hymenoptera: Mymaridae), a Parasitoid of the Eggs of Dytiscidae (Coleoptera): III. The Adult Life and Sex Ratio. Trans R Entomol Soc Lond 118(2):23–49CrossRefGoogle Scholar
  64. Jackson BT, Brewster CC, Paulson SL (2012) La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae). J Med Entomol 49(6):1424–1429PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jäger-Zürn I, Spies M, Philbrick CT Bove CP, Mora-Olivo A (2013) Plant galls (cecidia) in the neotropical water plant family Podostemaceae induced by larvae of Chironomidae. Spixiana 36(1):97–112Google Scholar
  66. Johansson F (2002) Reaction norms and production costs of predator-induced morphological defences in a larval dragonfly (Leucorrhinia dubia: Odonata). Can J Zool 80(5):944–950CrossRefGoogle Scholar
  67. Johansson F, Samuelsson L (1994) Fish-induced variation in abdominal spine length of Leucorrhinia dubia (Odonata) larvae? Oecologia 100(1–2):74–79PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ke YH, Ju YM (2015) Two rare ophiocordycipitaceous fungi newly recorded in Taiwan. Bot Stud 56(1):30PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kenneth W. Cummins, (1973) Trophic Relations of Aquatic Insects. Annual Review of Entomology 18 (1):183-206CrossRefGoogle Scholar
  70. Kenneth W. Cummins, (2016) Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology 75 (s1)Google Scholar
  71. Kehr A, Schnack J (1991) Predator prey relationship between Giant water bugs (Belostoma oxyurum) and larval anurans (Bufo arenarum). Alytes 9:61–69Google Scholar
  72. Kiyashko SI, Imbs AB, Narita T, Svetashev VI, Wada E (2004) Fatty acid composition of aquatic insect larvae Stictochironomus Pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria. Comp Biochem Physiol B Biochem Mol Biol 139(4):705–711PubMedCrossRefPubMedCentralGoogle Scholar
  73. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626PubMedCrossRefPubMedCentralGoogle Scholar
  74. Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD (2005) Trophic cascades across ecosystems. Nature 437(7060):880PubMedCrossRefPubMedCentralGoogle Scholar
  75. Koella JC et al (2002) Stage-specific manipulation of a mosquito’s host-seeking behavior by the malaria parasite Plasmodium gallinaceum. Behav Ecol 13:816–820CrossRefGoogle Scholar
  76. Kohler SL (2008) The ecology of host–parasite interactions in aquatic insects. In: Lancaster J, Briers R, Macadam C (eds) Aquatic insects: challenges to populations. CAB International, Wallingford, pp 55–80CrossRefGoogle Scholar
  77. Kohler SL, Hoiland WK (2001) Population regulation in an aquatic insect: the role of disease. Ecology 82(8):2294–2305CrossRefGoogle Scholar
  78. Kohler SL, Wiley MJ (1997) Pathogen outbreaks reveal large-scale effects of competition in stream communities. Ecology 78(7):2164–2176CrossRefGoogle Scholar
  79. Kula RR, Gates MG, Buffington ML, Harms NE (2017) Parasitoid Wasps (Hymenoptera: Apocrita) Associated with Sagittaria latifolia Willd. and Sagittaria platyphylla (Engelm.) J. G. sm. (Alismatales: Alismataceae) in the Nearctic Region. Proc Entomol Soc Wash 19(2):215–217CrossRefGoogle Scholar
  80. Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian journal of zoology, 68(4), 619-640.Google Scholar
  81. Lima-Camara TN, Bruno RV, Luz PM, Castro MG, Lourenço-de-Oliveira R, Sorgine MHF (2011) Dengue infection increases the locomotor activity of Aedes aegypti females. PLoS One 6(3):e17690PubMedPubMedCentralCrossRefGoogle Scholar
  82. Logue JB, Stedmon CA, Kellerman AM, Nielsen NJ, Andersson AF, Laudon H, Lindström ES, Kritzberg ES (2016) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10(3):533–545PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lowenberger CA, Rau ME (1994) Plagiorchis elegans: emergence, longevity and infectivity of cercariae, and host behavioural modifications during cercarial emergence. Parasitology 109(1):65–72PubMedCrossRefPubMedCentralGoogle Scholar
  84. Luttbeg B, Kerby JL (2005) Are scared prey as good as dead? Trends Ecol Evol 20(8):416–418PubMedCrossRefPubMedCentralGoogle Scholar
  85. Mackay RJ, Kalff J (1973) Ecology of two related species of caddis fly larvae in the organic substrates of a woodland stream. Ecology 54(3):499–511CrossRefGoogle Scholar
  86. Majdi N, Traunspurger W, Richardson JS, Lecerf A (2015) Small stonefly predators affect microbenthic and meiobenthic communities in stream leaf packs. Freshw Biol 60(9):1930–1943CrossRefGoogle Scholar
  87. Marden JH (1989) Bodybuilding dragonflies: costs and benefits of maximizing flight muscle. Physiol Zool 62(2):505–521CrossRefGoogle Scholar
  88. Marsollier L, Stinear T, Aubry J, Saint André JP, Robert R, Legras P, Manceau AL, Audrain C, Bourdon S, Kouakou H, Carbonnelle B (2004) Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl Environ Microbiol 70(2):1097–1103PubMedPubMedCentralCrossRefGoogle Scholar
  89. Martens A, Grabow K (2011) Early stadium damselfly larvae (Odonata: Coenagrionidae) as prey of an aquatic plant, Utricularia australis. Int J Odonatol 14(1):101–104CrossRefGoogle Scholar
  90. Y. J. McGaha, (1952) The Limnological Relations of Insects to Certain Aquatic Flowering Plants. Transactions of the American Microscopical Society 71 (4):355CrossRefGoogle Scholar
  91. Merritt, R. W., Cummins, K. W., & Berg, M. B. (1996). Aquatic insects of North America. Kendall Hunt, Dubuque.Google Scholar
  92. Menke A (1979) Family Belostomatidae - Giant water bugs. In: Menke A (ed) The semiaquatic and aquatic Hemiptera of California (Heteroptera: Hemiptera). University of California Press, Berkeley, CA, pp 76–86Google Scholar
  93. Moore KA, Williams DD (1990) Novel strategies in the complex defense repertoire of a stonefly (Pteronarcys dorsata) nymph. Oikos:49–56Google Scholar
  94. Nair GA, Morse JC, Marshall SA (2015) Aquatic insects and their societal benefits and risks. J Entomol Zool Stud 3(3)Google Scholar
  95. Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci 98(1):166–170PubMedCrossRefPubMedCentralGoogle Scholar
  96. Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T (2014) Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc Natl Acad Sci 111(28):10257–10262PubMedCrossRefPubMedCentralGoogle Scholar
  97. Nislow KH, Molles MC Jr (1993) The influence of larval case design on vulnerability of Limnephilus frijole (Trichoptera) to predation. Freshw Biol 29(3):411–417CrossRefGoogle Scholar
  98. Paetzold A, Schubert CJ, Tockner K (2005) Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8(7):748–759CrossRefGoogle Scholar
  99. Parajulee, M. N., & Phillips, T. W. (1995). Survivorship and cannibalism in Lyctocoris campestris (Hemiptera: Anthocoridae): effects of density, prey availability, and temperature. Journal of Entomological Science, 30(1), 1-8.Google Scholar
  100. Peckarsky BL (1980) Predator-prey interactions between stoneflies and mayflies: behavioral observations. Ecology 61(4):932–943CrossRefGoogle Scholar
  101. Peckarsky BL (1987) Mayfly cerci as defense against stonefly predation: deflection and detection. Oikos:161–170Google Scholar
  102. Peckarsky BL, Dodson SI (1980) Do stonefly predators influence benthic distributions in streams? Ecology 61(6):1275–1282CrossRefGoogle Scholar
  103. Peláez-Rodríguez, M., Trivinho-Strixino, S., & Urso-Guimarães, M. V. (2003). Galls in rhizome of an aquatic macrophyte, Eichhornia azurea (Swartz) kunth (Pontederiaceae), in Jataí Ecological Station, Luiz Antônio, SP, Brazil. Brazilian Journal of Biology, 63(4), 723-726.Google Scholar
  104. Poulin R (1995) “Adaptive” changes in the behaviour of parasitized animals: a critical review. Int J Parasitol 25(12):1371–1383PubMedCrossRefPubMedCentralGoogle Scholar
  105. Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75(3):277–293PubMedCrossRefPubMedCentralGoogle Scholar
  106. Proctor H, Pritchard G (1989) Neglected predators: water mites (Acari: Parasitengona: Hydrachnellae) in freshwater communities. J N Am Benthol Soc 8(1):100–111CrossRefGoogle Scholar
  107. Querino, R. B., & Hamada, N. (2009). An aquatic microhymenopterous egg-parasitoid of Argia insipida Hagen in Selys (Odonata: Coenagrionidae) and biological observations in the Central Amazon, Brazil. Neotropical entomology, 38(3), 346-351.Google Scholar
  108. Ready PD (2008) Leishmania manipulates sandfly feeding to enhance its transmission. Trends Parasitol 24(4):151–153PubMedCrossRefPubMedCentralGoogle Scholar
  109. Resetarits Jr WJ, Binckley CA (2009) Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology, 90(4), 869-876.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Roberts D (2017) Mosquito larvae can detect water vibration patterns from a nearby predator. Bull Entomol Res 107(4):499–505PubMedCrossRefPubMedCentralGoogle Scholar
  111. Rogers ME (2012) The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front Microbiol 3:223PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rogers ME, Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog 3(6):e91PubMedPubMedCentralCrossRefGoogle Scholar
  113. Roque FDO, Trivinho-Strixino S, Jancso M, Fragoso EN (2004) Records of Chironomidae larvae living on other aquatic animals in Brazil. Biota Neotrop 4(2):1–9Google Scholar
  114. Rossignol PA, Ribeiro JMC, Spielman ANDA (1986) Increased biting rate and reduced fertility in sporozoite-infected mosquitoes. Am J Trop Med Hyg 35(2):277–279PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sabo JL, Bastow JL, Power ME (2002) Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J N Am Benthol Soc 21(2):336–343CrossRefGoogle Scholar
  116. Salinas AS, Costa RN, Orrico VG, Solé M (2018) Tadpoles of the bromeliad-dwelling frog Phyllodytes luteolus are able to prey on mosquito larvae. Ethol Ecol Evol 30(6):485–496CrossRefGoogle Scholar
  117. Santolamazza S, Baquero E, Cordero-Rivera A (2011) Incidence of Anagrus obscurus (Hymenoptera: Mymaridae) egg parasitism on Calopteryx haemorrhoidalis and Platycnemis pennipes (Odonata: Calopterygidae: Platycnemididae) in Italy. Entomol Sci 14(3):366–369CrossRefGoogle Scholar
  118. Sanzone DM et al (2003) Carbon and nitrogen transfer from a desert stream to riparian predators. Oecologia 134(2):238–250PubMedCrossRefPubMedCentralGoogle Scholar
  119. Sazama EJ, Bosch MJ, Shouldis CS, Ouellette SP, Wesner JS (2017) Incidence of Wolbachia in aquatic insects. Ecol Evol 7:1165–1169PubMedPubMedCentralCrossRefGoogle Scholar
  120. Schilder RJ, Marden JH (2007) Metabolic syndrome in insects triggered by gut microbes. J Diabetes Sci Technol 1(5):794–796PubMedPubMedCentralCrossRefGoogle Scholar
  121. Scholte EJ, Knols BG, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: a review. J Insect Sci 4(1)Google Scholar
  122. Schwartz, A., & Koella, J. C. (2001). Trade-offs, conflicts of interest and manipulation in Plasmodium–mosquito interactions. Trends in parasitology, 17(4), 189-194.Google Scholar
  123. Sih A (1982) Foraging strategies and the avoidance of predation by an aquatic insect, Notonecta hoffmanni. Ecology 63(3):786–796CrossRefGoogle Scholar
  124. Silberbush A, Resetarits WJ Jr (2017) Mosquito female response to the presence of larvivorous fish does not match threat to larvae. Ecol Entomol 42(5):595–600CrossRefGoogle Scholar
  125. Sinsabaugh RL, Linkins AE, Benfield EF (1985) Cellulose digestion and assimilation by three leaf-shredding aquatic insects. Ecology 66(5):1464–1471CrossRefGoogle Scholar
  126. Smallegange, R. C., van Gemert, G. J., van de Vegte-Bolmer, M., Gezan, S., Takken, W., Sauerwein, R. W., & Logan, J. G. (2013). Malaria infected mosquitoes express enhanced attraction to human odor. PloS one, 8(5), e63602.Google Scholar
  127. Smith B (1988) Host-parasite interaction and impact of larval water mites on insects. Annu Rev Entomol 33(1):487–507CrossRefGoogle Scholar
  128. Soluk DA, Clifford HF (1985) Microhabitat shifts and substrate selection by the psammophilous predator Pseudiron centralis McDunnough (Ephemeroptera: Heptageniidae). Can J Zool 63(7):1539–1543CrossRefGoogle Scholar
  129. Stechmann DH (1978) Eiablage, Parasitismus und postparasitische Entwicklung von Arrenurus-Arten (Hydrachnellae, Acari). Z Parasitenkd 57(2):169–188CrossRefGoogle Scholar
  130. Stoehr AM, Kokko H (2006) Sexual dimorphism in immunocompetence: what does life-history theory predict? Behav Ecol 17(5):751–756CrossRefGoogle Scholar
  131. Stoks R, Córdoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol 57:249–265PubMedCrossRefPubMedCentralGoogle Scholar
  132. Suberkropp K (1992) Interactions with invertebrates. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes, Ecological Studies, vol 94. Springer-Verlag, Berlin, pp 118–134CrossRefGoogle Scholar
  133. Swart C, Felgenhauer B (2003) Structure and function of the mouthparts and salivary gland complex of the Giant Waterbug, Belostoma lutarium (Stal) (Hemiptera: Belostomatidae). Ann Entomol Soc Am 96:870–882CrossRefGoogle Scholar
  134. Turlings, T. C., & Erb, M. (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annual review of entomology, 63, 433-452.Google Scholar
  135. Urso-Guimarães, M. V. (2014). New species of Lopesia (Cecidomyiidae, Diptera) associated with Eichhornia azurea (Sw.) Kunth (Pontederiaceae) from Brazil. Iheringia Série Zoologia, 104(4).CrossRefGoogle Scholar
  136. Vance SA, Peckarsky BL (1997) The effect of mermithid parasitism on predation of nymphal Baetis bicaudatus (Ephemeroptera) by invertebrates. Oecologia 110(1):147–152PubMedCrossRefPubMedCentralGoogle Scholar
  137. Ward AK, Dahm CN, Cummins KW (1985) Nostoc (Cyanophyta) productivity in oregon stream ecosystems: invertebrate influences and differences between morphological types 1. Journal of Phycology 21(2):223–227CrossRefGoogle Scholar
  138. Westveer JJ, Verdonschot PF, Verdonschot RC (2018) Biotic interactions enhance survival and fitness in the caddisfly Micropterna sequax (Trichoptera: Limnephilidae). Hydrobiologia 818(1):31–41CrossRefGoogle Scholar
  139. White DA (1969) The infection of immature aquatic insects by larval Paragordius (Nematomorpha). Great Basin Nat 29(1):10Google Scholar
  140. Wildermuth H, Martens A (2007) The feeding action of Forcipomyia paludis (Diptera: Ceratopogonidae), a parasite of Odonata imagines. Int J Odonatol 10(2):249–255CrossRefGoogle Scholar
  141. Wiles CM, Bolek MG (2015) Damselflies (Zygoptera) as paratenic hosts for Serpinema trispinosum and its report from turtle hosts from Oklahoma, USA. Folia Parasit 62:019CrossRefGoogle Scholar
  142. Williams D, Williams S (2017) Aquatic insects and their potential to contribute to the diet of the globally expanding human population. Insects 8(3):72PubMedCentralCrossRefGoogle Scholar
  143. Wissinger SA, Sparks GB, Rouse GL, Brown WS, Steltzer H (1996) Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands. Ecology 77(8):2421–2430CrossRefGoogle Scholar
  144. Wissinger S, Steinmetz J, Alexander JS, Brown W (2004) Larval cannibalism, time constraints, and adult fitness in caddisflies that inhabit temporary wetlands. Oecologia 138(1):39–47PubMedCrossRefPubMedCentralGoogle Scholar
  145. Wissinger SA et al (2006) Predator defense along a permanence gradient: roles of case structure, behavior, and developmental phenology in caddisflies. Oecologia 147(4):667–678PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wong Sato AA, Kato M (2017) Pollination system of Corylopsis gotoana (Hamamelidaceae) and its stonefly (Plecoptera) co-pollinator. Plant Species Biol 32(4):440–447CrossRefGoogle Scholar
  147. Yang E et al (2016) Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. Nat Commun 7:13698PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yee DA, Skiff JF (2014) Interspecific competition of a new invasive mosquito, Culex coronator, and two container mosquitoes, Aedes albopictus and Cx. quinquefasciatus (Diptera: Culicidae), across different detritus environments. J Med Entomol 51(1):89–96PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zancarini A, Echenique-Subiabre I, Debroas D, Taïb N, Quiblier C, Humbert JF (2017) Deciphering Biodiversity and Interactions between Bacteria and Microeukaryotes within Epilithic Biofilms from the Loue River, France. Sci Rep 7(1):1–13002ECrossRefGoogle Scholar
  150. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic microbial ecology 28(2):141–155CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gabriela C. Mendes
    • 1
  • Guilherme Gonzaga da Silva
    • 1
  • Leonardo Samuel Ricioli
    • 1
  • Rhainer Guillermo
    • 2
  1. 1.Laboratory of Ecological Studies on Ethology and Evolution (LESTES)Federal University of São CarlosSão CarlosBrazil
  2. 2.Federal University of São Carlos, UFSCar, São CarlosSão PauloBrazil

Personalised recommendations