Advertisement

Effects of Abiotic Factors and Ecogeographic Patterns on the Ecology, Distribution, and Behavior of Aquatic Insects

  • Vinicius Marques Lopez
  • Aurélio Fajar Tonetto
  • Ricardo Cardoso Leite
  • Rhainer Guillermo
Chapter

Abstract

Aquatic insects are inserted in a physical and chemical world with a wide range of challenges that selected a myriad of adaptations and strategies throughout their evolutionary history. Mayflies, stoneflies, dragonflies, and many other insects inhabit both still and running waters, freshwater, and brackish waters; hence, they must deal with temperature regimes, variations on habitat complexity, and water chemical composition on a daily basis. All these environmental features determine not only how aquatic insects behave and occupy microhabitats in a stream or pond, but also define species distribution at macroscale. Here, in this chapter we attempt to show how this fascinating water world influences the lives of aquatic insects and their distribution across space.

Keywords

Environment Habitat Microhabitat Heterogeneity Complexity Hydraulics Temperature 

References

  1. Atkinson D (1994) Temperature and organism size: a biological law for ectotherms? Adv Ecol Res 25:1–58CrossRefGoogle Scholar
  2. Atkinson CL, Encalada AC, Rugenski AT, Thomas SA, Landeira-Dabarca A, Poff NL, Flecker AS (2018) Determinants of food resource assimilation by stream insects along a tropical elevation gradient. Oecologia 187(3):1–14CrossRefGoogle Scholar
  3. Banks TB, Kincaid RM, Boersma KS (2018) Temperature and dissolved oxygen determine submersion time in aquatic beetle Peltodytes callosus (Coleoptera: Haliplidae). J Insect Behav 31(4):427–435CrossRefGoogle Scholar
  4. Baptista DF, Dorvillé LFM, Buss DF, Nessiamian JL (2001) Spatial and temporal organization of aquatic insects assemblages in the longitudinal gradient of a tropical river. Rev Bras Biol 61(2):295–304CrossRefGoogle Scholar
  5. Bergey EA (1999) Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnol Oceanogr 44(6):1522–1529CrossRefGoogle Scholar
  6. Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttingen Studien 1:595–708Google Scholar
  7. Biggs BJ, Hickey CW (1994) Periphyton responses to a hydraulic gradient in a regulated river in New Zealand. Freshw Biol 32(1):49–59CrossRefGoogle Scholar
  8. Biggs BJ, Nikora VI, Snelder TH (2005) Linking scales of flow variability to lotic ecosystem structure and function. River Res Appl 21(2-3):283–298CrossRefGoogle Scholar
  9. Brooks AJ, Haeusler T (2016) Invertebrate responses to flow: trait-velocity relationships during low and moderate flows. Hydrobiologia 773(1):23–34CrossRefGoogle Scholar
  10. Brooks AJ, Haeusler TIM, Reinfelds I, Williams S (2005) Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshw Biol 50(2):331–344CrossRefGoogle Scholar
  11. Brown AV, Brussock PP (1991) Comparisons of benthic invertebrates between riffles and pools. Hydrobiologia 220(2):99–108CrossRefGoogle Scholar
  12. Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167PubMedCrossRefGoogle Scholar
  13. Chadwick MA, Feminella JW (2001) Influence of salinity and temperature on the growth and production of a freshwater mayfly in the Lower Mobile River, Alabama. Limnol Oceanogr 46(3):532–542CrossRefGoogle Scholar
  14. Cheng L (1985) Biology of halobates (Heteroptera: Gerridae). Annu Rev Entomol 30(1):111–135CrossRefGoogle Scholar
  15. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85(1):139–169PubMedCrossRefGoogle Scholar
  16. Cooper IA (2010) Ecology of sexual dimorphism and clinal variation of coloration in a damselfly. Am Nat 176(5):566–572PubMedCrossRefGoogle Scholar
  17. Cooper SD, Diehl S, Kratz KIM, Sarnelle O (1998) Implications of scale for patterns and processes in stream ecology. Aust J Ecol 23:27–40CrossRefGoogle Scholar
  18. Corkum LD, Hanes EC (1992) Effects of temperature and photoperiod on larval size and survivorship of a burrowing mayfly (Ephemeroptera, Ephemeridae). Can J Zool 70(2):256–263CrossRefGoogle Scholar
  19. Cover MR, Seo JH, Resh VH (2015) Life history, burrowing behavior, and distribution of Neohermes filicornis (Megaloptera: Corydalidae), a long-lived aquatic insect in intermittent streams. West N Am Nat 75(4):474–490CrossRefGoogle Scholar
  20. Crisci-Bispo VL, Bispo PC, Froehlich CG (2007) Ephemeroptera, Plecoptera and Trichoptera assemblages in litter in a mountain stream of the Atlantic Rainforest from Southeastern Brazil. Rev Bras Zool 24(3):545–551CrossRefGoogle Scholar
  21. Davis JA, Barmuta LA (1989) An ecologically useful classification of mean and near-bed flows in streams and rivers. Freshw Biol 21(2):271–282CrossRefGoogle Scholar
  22. De Biee T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van Der Gucht K, Van Wichelen J (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15(7):740–747CrossRefGoogle Scholar
  23. De Marco Júnior P, Batista JD, Cabette HSR (2015) Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS One 10(4):e0123023PubMedPubMedCentralCrossRefGoogle Scholar
  24. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105(18):6668–6672PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467(7316):704PubMedCrossRefGoogle Scholar
  26. Ditsche-Kuru P, Koop JHE, Gorb SN (2010) Underwater attachment in current: the role of setose attachment structures on the gills of the mayfly larvae Epeorus assimilis (Ephemeroptera, Heptageniidae). J Exp Biol 213(11):1950–1959PubMedCrossRefGoogle Scholar
  27. Ditsche P, Michels J, Kovalev A, Koop J, Gorb S (2014) More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J R Soc Interface 11(92):20130989.CrossRefGoogle Scholar
  28. Downes BJ, Hindell JS (2000) What’s in a site? Variation in lotic macroinvertebrate density and diversity in a spatially replicated experiment. Austral Ecol 25(2):128–139CrossRefGoogle Scholar
  29. Downes BJ, Lake PS, Schreiber ESG (1995) Habitat structure and invertebrate assemblages on stream stones: a multivariate view from the riffle. Aust J Ecol 20(4):502–514CrossRefGoogle Scholar
  30. Downes BJ, Lake PS, Schreiber ESG, Glaister A (1998) Habitat structure and regulation of local species diversity in a stony, upland stream. Ecol Monogr 68(2):237–257CrossRefGoogle Scholar
  31. Dunson WA (1980) Adaptations of nymphs of a marine dragonfly, Erythrodiplax berenice, to wide variations in salinity. Physiol Zool 53(4):445–452CrossRefGoogle Scholar
  32. Endler JA (1991) Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision Res 31(3):587–608PubMedCrossRefGoogle Scholar
  33. Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc Natl Acad Sci 109(47):19310–19314PubMedCrossRefGoogle Scholar
  34. Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35(3):483–500CrossRefGoogle Scholar
  35. Godoy BS, Queiroz LL, Lodi S, Oliveira LG (2017) Environment and spatial influences on aquatic insect communities in Cerrado streams: the relative importance of conductivity, altitude, and conservation areas. Neotrop Entomol 46(2):151–158PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gordon ND, McMahon TA, Finlayson BL, Gippel CJ (2004) Stream hydrology: an introduction for ecologists. John Wiley and Sons, ChichesterGoogle Scholar
  37. Graba M, Sauvage S, Moulin FY, Urrea G, Sabater S, Sanchez-Pérez JM (2013) Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Res 47(7):2153–2163PubMedCrossRefPubMedCentralGoogle Scholar
  38. Growns IO, Davis JA (1994) Longitudinal changes in near-bed flows and macroinvertebrate communities in a Western Australian stream. J N Am Benthol Soc 13(4):417–438CrossRefGoogle Scholar
  39. Hassall C (2013) Time stress and temperature explain continental variation in damselfly body size. Ecography 36(8):894–903CrossRefGoogle Scholar
  40. Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata: a review. Int J Odonatol 11(2):131–153CrossRefGoogle Scholar
  41. Hassall C, Keat S, Thompson DJ, Watts PC (2014) Bergmann’s rule is maintained during a rapid range expansion in a damselfly. Glob Chang Biol 20(2):475–482PubMedCrossRefPubMedCentralGoogle Scholar
  42. Henry ER, Rivera JA, Linkem CN, Scales JA, Butler MA (2017) Damselflies that prefer dark habitats illustrate the importance of light as an ecological resource. Biol J Linn Soc 123(1):144–154CrossRefGoogle Scholar
  43. Horne CR, Hirst AG, Atkinson D (2015) Temperature-size responses match latitudinal size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol Lett 18(4):327–335PubMedCrossRefGoogle Scholar
  44. Hornig CE, Brusven MA (1986) Effects of suspended sediment on leaf processing by Hesperophylax occidentalis (Trichoptera: Limnephilidae) and Pteronarcys californica (Plecoptera: Pteronarcidae). Great Basin Nat 46(1):33–38Google Scholar
  45. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  46. Johnson BR, Weaver PC, Nietch CT, Lazorchak JM, Struewing KA, Funk DH (2015) Elevated major ion concentrations inhibit larval mayfly growth and development. Environ Toxicol Chem 34(1):167–172PubMedCrossRefGoogle Scholar
  47. Jones KK, Hetz SK, Seymour RS (2018) The effects of temperature, activity and convection on the plastron PO2 of the aquatic bug Aphelocheirus aestivalis (Hemiptera; Aphelocheiridae). J Insect Physiol 106(Pt 3):155–162PubMedCrossRefGoogle Scholar
  48. Juen L, De Marco P Jr (2011) Odonate biodiversity in terra firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv Div 4(4):265–274CrossRefGoogle Scholar
  49. Kapoor NN (1978) Effect of salinity on the osmoregulatory cells in the tracheal gills of the stonefly nymph, Paragnetina media (Plecoptera: Perlidae). Can J Zool 56(12):2608–2613CrossRefGoogle Scholar
  50. Kay WR, Halse SA, Scanlon MD, Smith MJ (2001) Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. J N Am Benthol Soc 20(2):182–199CrossRefGoogle Scholar
  51. Kefford BJ, Marchant R, Schäfer RB, Metzeling L, Dunlop JE, Choy SC, Goonan P (2011) The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates. Environ Pollut 159(1):302–310PubMedCrossRefGoogle Scholar
  52. Kefford BJ, Piscart C, Hickey HL, Gasith A, Ben-David E, Dunlop JE, Palmer CG, Allan K, Choy SC (2012) Global scale variation in the salinity sensitivity of riverine macroinvertebrates: Eastern Australia, France, Israel and South Africa. PLoS One 7(5):e35224PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kefford BJ, Buchwalter D, Canedo-Argüelles M, Davis J, Duncan RP, Hoffmann A, Thompson R (2016) Salinized rivers: de graded systems or new habitats for salt-tolerant faunas? Biol Lett 12(3):20151072PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kemp DJ, Batistic FK, Reznick DN (2018) Predictable adaptive trajectories of sexual coloration in the wild: evidence from replicate experimental guppy populations. Evolution 72(11):2462–2477PubMedCrossRefGoogle Scholar
  55. Klecka J, Boukal DS (2014) The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 176:183–191PubMedCrossRefGoogle Scholar
  56. Klein CE, Pinto NS, Spigoloni ZAV, Bergamini FM, de Melo FR, De Marco JP, Juen L (2018) The influence of small hydroelectric power plants on the richness and composition of Odonata species in the Brazilian Savanna. Int J Odonatol 21(1):33–44CrossRefGoogle Scholar
  57. Kriska G, Malik P, Csabai Z, Horváth G (2006) Why do highly polarizing black burnt-up stubble-fields not attract aquatic insects? An exception proving the rule. Vision Res 46(26):4382–4386PubMedCrossRefGoogle Scholar
  58. Leader JP, Bedford JJ (1979) Oviposition by the marine caddisfly, Philanisus plebeius (Walk.). Search 10:275–276Google Scholar
  59. Lencioni V, Jousson O, Guella G, Bernabò P (2015) Cold adaptive potential of chironomids overwintering in a glacial stream. Physiol Entomol 40(1):43–53CrossRefGoogle Scholar
  60. Logan P, Brooker MP (1983) The macroinvertebrate faunas of riffle and pools. Water Res 17(3):263–270CrossRefGoogle Scholar
  61. Lund JO, Wissinger SA, Peckarsky BL (2016) Caddisfly behavioral responses to drying cues in temporary ponds: implications for effects of climate change. Freshw Sci 35(2):619–630CrossRefGoogle Scholar
  62. Lutz PE (1968) Effects of temperature and photoperiod on larval development in Lestes eurinus (Odonata: Lestidae). Ecology 49(4):637–644CrossRefGoogle Scholar
  63. Martins RT, Melo AS, Gonçalves JF, Campos CM, Hamada N (2017) Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae). Hydrobiologia 789(1):31–44CrossRefGoogle Scholar
  64. Mayr E (1956) Geographical character gradients and climatic adaptation. Evolution 10(1):105–108CrossRefGoogle Scholar
  65. Mayr E (1996) The autonomy of biology: the position of biology among the sciences. Q Rev Biol 71(1):97–106CrossRefGoogle Scholar
  66. McCreadie JW, Williams RH, Stutsman S, Finn DS, Adler PH (2018) The influence of habitat heterogeneity and latitude on gamma diversity of the Nearctic Simuliidae, a ubiquitous group of stream-dwelling insects. Insect Sci 25(4):712–720PubMedCrossRefGoogle Scholar
  67. McCulloch GA, Waters JM (2018) Does wing reduction influence the relationship between altitude and insect body size? A case study using New Zealand’s diverse stonefly fauna. Ecol Evol 8(2):953–960PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mendes TP, Luiza-Andrade A, Cabette HSR, Juen L (2018) How Does Environmental Variation Affect the Distribution of Dragonfly Larvae (Odonata) in the Amazon-Cerrado Transition Zone in Central Brazil? Neotrop Entomol 47(1):37–45PubMedCrossRefGoogle Scholar
  69. Mendonça FZ, Bernardy JV, Oliveira CEK, Oliveira PBG, De Marco P (2018) Temperature effect on the development of tropical dragonfly eggs. Neotrop Entomol 47(4):484–491PubMedCrossRefGoogle Scholar
  70. Merilaita S (2003) Visual background complexity facilitates the evolution of camouflage. Evolution 57:1248–1254PubMedCrossRefGoogle Scholar
  71. Merritt RW, Cummins KW (eds) (1996) An introduction to the aquatic insects of North America. Kendall Hunt, DubuqueGoogle Scholar
  72. Millán A, Velasco J, Gutiérrez-Cánovas C, Arribas P, Picazo F, Sánchez-Fernández D, Abellán P (2011) Mediterranean saline streams in southeast Spain: what do we know? J Arid Environ 75(12):1352–1359CrossRefGoogle Scholar
  73. Mondal RP, Chandra G, Bandyopadhyay S, Ghosh A (2017) Effect of temperature and search area on the functional response of Anisops sardea (Hemiptera: Notonectidae) against Anopheles stephensi in laboratory bioassay. Acta Trop 166:262–267PubMedCrossRefGoogle Scholar
  74. Norling U (2018) Constant and shifting photoperiods as seasonal cues during larval development of the univoltine damselfly Lestes sponsa (Odonata: Lestidae). Int J Odonatol 21(2):1–22CrossRefGoogle Scholar
  75. Nowinszky L (2003) The orientation of insects by light—major theories. The handbook of light trapping. Savaria University Press, Szombathely, pp 15–18Google Scholar
  76. O’Halloran K, Cavanagh JA, Harding JS (2008) Response of a New Zealand mayfly (Deleatidium spp.) to acid mine drainage: implications for mine remediation. Environ Toxicol Chem 27(5):1135–1140PubMedCrossRefGoogle Scholar
  77. Pateman RM, Hill JK, Roy DB, Fox R, Thomas CD (2012) Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science 336(6084):1028–1030PubMedCrossRefGoogle Scholar
  78. Pinkert S, Brandl R, Zeuss D (2017) Colour lightness of dragonfly assemblages across North America and Europe. Ecography 40(9):1110–1117CrossRefGoogle Scholar
  79. Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW, Reice SR, Sheldon AL, Wallace JB, Wissmar RC (1988) The role of disturbance in stream ecology. J N Am Benthol Soc 7(4):433–455CrossRefGoogle Scholar
  80. Robson BJ (1996) Habitat architecture and trophic interaction strength in a river: riffle-scale effects. Oecologia 107(3):411–420PubMedCrossRefPubMedCentralGoogle Scholar
  81. Roff DA, Heibo E, Vøllestad LA (2006) The importance of growth and mortality costs in the evolution of the optimal life history. J Evol Biol 19(6):1920–1930PubMedCrossRefPubMedCentralGoogle Scholar
  82. Roque FO, Trivinho-Strixino S (2001) Benthic macroinvertebrates in mesohabitats of different spatial dimensions in a first order stream (São Carlos, SP). Acta Limnol Bras 13(2):69–77Google Scholar
  83. Ross-Gillespie V, Picker MD, Dallas HF, Day JA (2018) The role of temperature in egg development of three aquatic insects Lestagella penicillata (Ephemeroptera), Aphanicercella scutata (Plecoptera), Chimarra ambulans (Trichoptera) from South Africa. J Therm Biol 71:158–170PubMedCrossRefGoogle Scholar
  84. Roulin A (2016) Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin based colouration. Biol Rev 91(2):328–348PubMedCrossRefGoogle Scholar
  85. Sharpe AK, Downes BJ (2006) The effects of potential larval supply, settlement and post-settlement processes on the distribution of two species of filter-feeding caddisflies. Freshw Biol 51(4):717–729CrossRefGoogle Scholar
  86. Sheldon F, Walker KF (1998) Spatial distribution of littoral invertebrates in the lower Murray–Darling River system, Australia. Mar Freshw Res 49(2):171–182CrossRefGoogle Scholar
  87. Shelomi M (2012) Where are we now? Bergmann’s rule sensu lato in insects. Am Nat 180(4):511–519PubMedCrossRefGoogle Scholar
  88. Silveira MP, Buss DF, Nessimian JL, Baptista DF (2006) Spatial and temporal distribution of benthic macroinvertebrates in a Southeastern Brazilian river. Braz J Biol 66(2B):623–632PubMedCrossRefGoogle Scholar
  89. Sutcliffe DW, Carrick TR (1973) Studies on mountain streams in the English Lake District: I. pH, calcium and the distribution of invertebrates in the River Duddon. Freshw Biol 3(5):437–462CrossRefGoogle Scholar
  90. Sweeney BW, Funk DH, Camp AA, Buchwalter DB, Jackson JK (2018) Why adult mayflies of Cloeon dipterum (Ephemeroptera: Baetidae) become smaller as temperature warms. Freshw Sci 37(1):64–81CrossRefGoogle Scholar
  91. Taniguchi H, Tokeshi M (2004) Effects of habitat complexity on benthic assemblages in a variable environment. Freshw Biol 49(9):1164–1178CrossRefGoogle Scholar
  92. Tavares RI, Pestana GC, Rocha AD, Schiavone DC, Guillermo-Ferreira R (2018) Come to the dark side: habitat selection of larval odonates depends on background visual patterns. Ecol Entomol 46(5):640–646CrossRefGoogle Scholar
  93. Tokeshi M (1994) Community ecology and patchy freshwater habitats. In: Giller PS, Hildrew AG, Raffaelli DG (eds) Aquatic ecology: scale, pattern and process. Blackwell Scientific Publications, Oxford, pp 63–91Google Scholar
  94. Tonetto AF, Guillermo-Ferreira R, Cardoso-Leite R, Novaes MC, Peres CK (2018) The relationship between water velocity and morphological complexity of stream dwellers. Limnologica 72:22–27CrossRefGoogle Scholar
  95. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37(1):130–137CrossRefGoogle Scholar
  96. Verberk WCEP, Calosi P, Spicer JI, Kehl S, Bilton DT (2018) Does plasticity in thermal tolerance trade-off with inherent tolerance? The influence of setal tracheal gills on thermal tolerance and its plasticity in a group of European diving beetles. J Insect Physiol 106(Pt 3):163–171PubMedPubMedCentralCrossRefGoogle Scholar
  97. Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography 26(6):751–767CrossRefGoogle Scholar
  98. Wainwright PC, Reilly SM (eds) (1994) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, ILGoogle Scholar
  99. Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8(1):2–8CrossRefGoogle Scholar
  100. Watt WB (1968) Adaptive significance of pigment polymorphisms in Colias butterflies. I Variation of melanin pigment in relation to thermoregulation. Evolution 22(3):437–458PubMedCrossRefGoogle Scholar
  101. Xiao F, Yang C, Shi H, Wang J, Sun L, Lin L (2016) Background matching and camouflage efficiency predict population density in four-eyed turtle (Sacalia quadriocellata). Behav Processes 131:40–46PubMedCrossRefGoogle Scholar
  102. Zeuss D, Brandl R, Brändle M, Rahbek C, Brunzel S (2014) Global warming favours light-coloured insects in Europe. Nat Commun 5:3874PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vinicius Marques Lopez
    • 1
  • Aurélio Fajar Tonetto
    • 2
  • Ricardo Cardoso Leite
    • 3
  • Rhainer Guillermo
    • 4
  1. 1.Universidade de São PauloRibeirão PretoBrazil
  2. 2.Universidade PaulistaJundiaíBrazil
  3. 3.Instituto Federal de São PauloPiracicabaBrazil
  4. 4.Federal University of São Carlos, UFSCar, São CarlosSão PauloBrazil

Personalised recommendations