Advertisement

Genetic Connectivity in Conservation of Freshwater Insects

  • Drielly da Silveira Queiroga
  • Renan Fernandes Moura
  • Jessica Ware
Chapter

Abstract

Ecosystems and species are disappearing fast and the conservation of isolated and fragmented landscapes is not enough to maintain healthy populations. However, populations from fragmented and impacted landscapes may be benefited if there are pathways allowing their connection. These pathways enable the exchange of individuals, allowing species to increase their genetic diversity and resilience to stochastic events by recolonization and phenotypic adaptations. In aquatic ecosystems, climate changes and water exploration are impacting the species’ capability to disperse among populations and survival. In this scenario, aquatic insects are even more threatened as most of them have terrestrial and aquatic life stages, suffering impacts from both environments. Focusing in this aspect, this chapter aims to provide an initial insight about how population connectivity can be used in conservation strategies as well as methods of measuring genetic connectivity. Here we selected studies with odonates, ephemeropterans, and other aquatic insects to exemplify how river dynamics can influence the direction of gene flow and dispersal patterns of individuals, besides showing the main approaches used in this study area. By contributing to the understanding of this necessary field, we hope to stimulate new researchers to engage in the conservation of aquatic insects.

Keywords

Conservation genetics Endangered arthropods Entomology Habitat fragmentation Molecular markers 

References

  1. Alexander LC, Hawthorne DJ, Palmer MA, Lamp WO (2011) Loss of genetic diversity in the North American mayfly Ephemerella invaria associated with deforestation of headwater streams. Freshw Biol 56:1456–1467.  https://doi.org/10.1111/j.1365-2427.2010.02566.x CrossRefGoogle Scholar
  2. Alp M, Keller I, Westram AM, Robinson CT (2012) How river structure and biological traits influence gene flow: a population genetic study of two stream invertebrates with differing dispersal abilities. Freshw Biol 57:969–981.  https://doi.org/10.1111/j.1365-2427.2012.02758.x CrossRefGoogle Scholar
  3. Anderson RC (2009) Do dragonflies migrate across the western Indian Ocean? J Trop Ecol 25:347–358CrossRefGoogle Scholar
  4. Anderson CD, Epperson BK, Fortin MJ et al (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575.  https://doi.org/10.1111/j.1365-294X.2010.04757.x CrossRefPubMedGoogle Scholar
  5. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9(323).  https://doi.org/10.1186/1471-2105-9-323
  6. Baker AM, Williams SA, Hughes JM (2003) Patterns of spatial genetic structuring in a hydropsychid caddisfly (Cheumatopsyche sp. AV1) from southeastern Australia. Mol Ecol 12:3313–3324.  https://doi.org/10.1046/j.1365-294X.2003.02011.x CrossRefPubMedGoogle Scholar
  7. Boersma KS, Lytle DA (2014) Overland dispersal and drought-escape behavior in a flightless aquatic insect, Abedus herberti (Hemiptera: Belostomatidae). Southwest Nat 59:301–302.  https://doi.org/10.1894/N09-FRG-07.1 CrossRefGoogle Scholar
  8. Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30:492–507.  https://doi.org/10.1007/s00267-002-2737-0 CrossRefGoogle Scholar
  9. Campbell Grant EH, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175.  https://doi.org/10.1111/j.1461-0248.2006.01007.x CrossRefPubMedGoogle Scholar
  10. Castilho CS, Marins-Sá LG, Benedet RC, Freitas TRO (2012) Genetic structure and conservation of Mountain Lions in the south-Brazilian Atlantic rain forest. Genet Mol Biol 35(1):65–73CrossRefGoogle Scholar
  11. Chaput-Bardy A, Lemaire C, Picard D, Secondi J (2008) In-stream and overland dispersal across a river network influences gene flow in a freshwater insect, Calopteryx splendens. Mol Ecol 17:3496–3505.  https://doi.org/10.1111/j.1365-294X.2008.03856.x CrossRefPubMedGoogle Scholar
  12. Coleman RA, Gauffre B, Pavlova A, Beheregaray LB, Kearns J, Lyon J, Sasaki M, Leblois R, Sgro C, Sunnucks P (2018) Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish. Heredity 120(6):515–532CrossRefGoogle Scholar
  13. Crook DA, Lowe WH, Allendorf FW et al (2015) Human effects on ecological connectivity in aquatic ecosystems: integrating scientific approaches to support management and mitigation. Sci Total Environ 534:52–64.  https://doi.org/10.1016/j.scitotenv.2015.04.034 CrossRefPubMedGoogle Scholar
  14. Davis CD, Epps CW, Flitcroft RL, Banks MA (2018) Refining and defining riverscape genetics: how rivers influence population genetic structure. Wiley Interdiscip Rev Water e1269.  https://doi.org/10.1002/wat2.1269 CrossRefGoogle Scholar
  15. Elbrecht V, Feld CK, Gies M et al (2015) Genetic diversity and dispersal potential of the stone fly Dinocras cephalotes in a central European low mountain range. Freshw Sci 33:181–192.  https://doi.org/10.1086/674536 CrossRefGoogle Scholar
  16. Eros T, Campbell Grant EH (2015) Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes. Freshw Biol 60:1487–1501.  https://doi.org/10.1111/fwb.12596 CrossRefGoogle Scholar
  17. Fagan WF (2012) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:3243–3249CrossRefGoogle Scholar
  18. Finn DS, Theobald DM, Black WC IV, Poff NL (2006) Spatial population genetic structure and limited dispersal in a rocky mountain alpine stream insect. Mol Ecol 15:3553–3566.  https://doi.org/10.1111/j.1365-294X.2006.03034.x CrossRefPubMedGoogle Scholar
  19. Finn DS, Blouin MS, Lytle DA (2007) Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshw Biol 52:1881–1897.  https://doi.org/10.1111/j.1365-2427.2007.01813.x CrossRefGoogle Scholar
  20. Frankham R, Ballou JD, Briscoe DA (2012) Introduction to conservation genetics. Cambridge University Press, Cambridge, p 640Google Scholar
  21. Hobson KA, Anderson RC, Soto DX, Wassenaar LI (2012) Isotopic evidence that dragonflies (Pantala flavescens) migrating through the Maldives come from the northern Indian subcontinent. PLoS One 7:e52594.  https://doi.org/10.1371/journal.pone.0052594 CrossRefGoogle Scholar
  22. Horne AJ, Goldman CR (1994) Limnology, vol 2. McGraw-Hill, New YorkGoogle Scholar
  23. Hughes JM (2007) Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshw Biol 52:616–631.  https://doi.org/10.1111/j.1365-2427.2006.01722.x CrossRefGoogle Scholar
  24. Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59:573–583.  https://doi.org/10.1525/bio.2009.59.7.8 CrossRefGoogle Scholar
  25. Hughes JM, Huey JA, Schmidt DJ (2013) Is realised connectivity among populations of aquatic fauna predictable from potential connectivity? Freshw Biol 58:951–966.  https://doi.org/10.1111/fwb.12099 CrossRefGoogle Scholar
  26. Keller D, Van Strien MJ, Holderegger R (2012) Do landscape barriers affect functional connectivity of populations of an endangered damselfly? Freshw Biol 57:1373–1384.  https://doi.org/10.1111/j.1365-2427.2012.02797.x CrossRefGoogle Scholar
  27. Kool JT, Moilanen A, Treml EA (2013) Population connectivity: recent advances and new perspectives. Landsc Ecol 28(2):165–185CrossRefGoogle Scholar
  28. May ML (2013) A critical overview of progress in studies of migration of dragonflies (Odonata: Anisoptera), with emphasis on North America. J Insect Conserv 17:1–15CrossRefGoogle Scholar
  29. McGlashan DJ, Hughes JM (2001) Low levels of genetic differentiation among populations of the freshwater fish Hypseleotris compressa (Gobiidae: Eleotridinae): implications for its biology, population connectivity and history. Heredity (Edinb) 86:222–233.  https://doi.org/10.1046/j.1365-2540.2001.00824.x CrossRefGoogle Scholar
  30. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561CrossRefGoogle Scholar
  31. Meffe GK, Vrijenhoek RC (1988) Conservation genetics in the management of desert fishes. Conserv Biol 2:157–169.  https://doi.org/10.1111/j.1523-1739.1988.tb00167.x CrossRefGoogle Scholar
  32. Miller MP, Blinn DW, Keim P (2002) Correlations between observed dispersal capabilities and patterns of genetic differentiation in populations of four aquatic insect species from the Arizona White Mountains, U.S.A. Freshw Biol 47:1660–1673.  https://doi.org/10.1046/j.1365-2427.2002.00911.x CrossRefGoogle Scholar
  33. Paz-Vinas I, Loot G, Stevens VM, Blanchet S (2015) Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Mol Ecol 24:4586–4604.  https://doi.org/10.1111/mec.13345 CrossRefPubMedGoogle Scholar
  34. Petersen I, Masters Z, Hildrew AG, Ormerod SJ (2004) Dispersal of adult aquatic insects in catchments of different land use. J Appl Ecol 41:934–950.  https://doi.org/10.1111/j.0021-8901.2004.00942.x CrossRefGoogle Scholar
  35. Pfeiler E, Markow TA (2017) Population connectivity and genetic diversity in long distance migrating insects: divergent patterns in representative butterflies and dragonflies. Biol J Linn Soc 122:479–486.  https://doi.org/10.1093/biolinnean/blx074 CrossRefGoogle Scholar
  36. Phillipsen IC, Lytle DA (2013) Aquatic insects in a sea of desert: population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography (Cop) 36:731–743.  https://doi.org/10.1111/j.1600-0587.2012.00002.x CrossRefGoogle Scholar
  37. Phillipsen IC, Kirk EH, Bogan MT et al (2015) Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Mol Ecol 24:54–69.  https://doi.org/10.1111/mec.13003 CrossRefGoogle Scholar
  38. Rosa AJDM (2009) Marcadores moleculares e suas aplicações em estudos populacionais de espécies de interesse zootécnico. Embrapa Cerrados, Planaltina, DFGoogle Scholar
  39. Sabando MC, Vila I, Peñaloza R, Véliz D (2011) Contrasting population genetic structure of two widespread aquatic insects in the Chilean high-slope rivers. Mar Freshw Res 62:1–10.  https://doi.org/10.1071/MF10105 CrossRefGoogle Scholar
  40. Short AEZ, Caterino MS (2009) On the validity of habitat as a predictor of genetic structure in aquatic systems: a comparative study using California water beetles. Mol Ecol 18:403–414.  https://doi.org/10.1111/j.1365-294X.2008.04039.x CrossRefPubMedGoogle Scholar
  41. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19.  https://doi.org/10.1034/j.1600-0706.2000.900102.x CrossRefGoogle Scholar
  42. Vannote RL, Minshall GW, Cummins KW et al (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137.  https://doi.org/10.1139/f80-017 CrossRefGoogle Scholar
  43. Watanabe K, Monaghan MT, Omura T (2008) Longitudinal patterns of genetic diversity and larval density of the riverine caddisfly Hydropsyche orientalis (Trichoptera). Aquat Sci 70:377–387.  https://doi.org/10.1007/s00027-008-8099-9 CrossRefGoogle Scholar
  44. Watanabe K, Monaghan MT, Takemon Y, Omura T (2010) Dispersal ability determines the genetic effects of habitat fragmentation in three species of aquatic insect. Aquat Conserv 20:574–579.  https://doi.org/10.1002/aqc.1124 CrossRefGoogle Scholar
  45. Watts PC, Rouquette JR, Saccheri IJ et al (2004) Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale. Mol Ecol 13:2931–2945.  https://doi.org/10.1111/j.1365-294X.2004.02300.x CrossRefPubMedGoogle Scholar
  46. Whitehead A, Galvez F, Zhang S et al (2011) Functional genomics of physiological plasticity and local adaptation in killifish. J Hered 102:499–511.  https://doi.org/10.1093/jhered/esq077 CrossRefPubMedGoogle Scholar
  47. Whitlock MC, Mccauley DE (1999) Indirect measures of gene flow and migration: F(ST) ≠ 1/(4Nm + 1). Heredity (Edinb) 82:117–125.  https://doi.org/10.1038/sj.hdy.6884960 CrossRefGoogle Scholar
  48. Wong BBM, Keogh JS, McGlashan DJ (2004) Current and historical patterns of drainage connectivity in eastern Australia inferred from population genetic structuring in a widespread freshwater fish Pseudomugil signifer (Pseudomugilidae). Mol Ecol 13:391–401.  https://doi.org/10.1046/j.1365-294X.2003.02085.x CrossRefPubMedGoogle Scholar
  49. Yaegashi S, Watanabe K, Monaghan M, Omura T (2014) Fine-scale dispersal in a stream caddisfly inferred from spatial autocorrelation of microsatellite markers. Freshw Sci 33:172–180.  https://doi.org/10.1086/675076 CrossRefGoogle Scholar
  50. Ye Z, Yuan J, Li M et al (2018) Geological effects influence population genetic connectivity more than Pleistocene glaciations in the water strider Metrocoris sichuanensis (Insecta: Hemiptera: Gerridae). J Biogeogr 45:690–701.  https://doi.org/10.1111/jbi.13148 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Drielly da Silveira Queiroga
    • 1
  • Renan Fernandes Moura
    • 2
  • Jessica Ware
    • 3
  1. 1.Department of BiologyUniversity of São Paulo (USP)Ribeirão PretoBrazil
  2. 2.Universidade Federal de Uberlândia – UFU – Centro de Estudos do Cerrado/Laboratório de Ecologia Comportamental e de Interações (LECI)UberlândiaBrazil
  3. 3.Biology DepartmentRutgers UniversityNewarkUSA

Personalised recommendations