Urban Aquatic Insects

  • Javier Muzón
  • Lía S. Ramos
  • Alejandro del Palacio


The increasing growth of urban areas on natural ecosystems has seriously affected wetlands. Aquatic insects, as key components of urban wetlands, are critically impacted by human environmental changes and practices. The main threats are those derived from the lost, replacement, or fragmentation of natural habitats, ecosystem homogenization, and modification of hydrological, sedimentological, and thermal wetland characteristics due to the surrounding urban matrix. Therefore, understanding the mechanisms by which urbanization processes affect biodiversity, and in particular how the biota responds to alteration of their habitats, is crucial for integrating the environment in proper urban planning. In this chapter we analyze the relationships between aquatic insects and environmental factors, including human influences and threats in urban wetlands. For this purpose, we compiled studies from around the world, especially from the neotropical region, addressing biological patterns and associated environmental processes in urban areas and endeavors. We discerned the main environmental threats and clues for the maintenance of the increase of the insect biodiversity, including the creation of new, man-made, wetlands. In addition, we focus on the importance of insect knowledge as indicators of environmental health in urban wetlands and the promotion of the citizen science to improve their conservation.


Urbanization Biodiversity Ecology Freshwater Colonization 


  1. Blakely TJ, Harding JS, Mcintosh AR, Winterbourn MJ (2006) Barriers to the recovery of aquatic insect communities in urban streams. Freshw Biol 51:1634–1645. CrossRefGoogle Scholar
  2. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523. CrossRefPubMedGoogle Scholar
  3. Buldrini F, Simoncelli A, Accordi S, Pezzi G, Dallai D (2015) Ten years of citizen science data collection of wetland plants in an urban protected area. Acta Bot Gall 162:365–373. CrossRefGoogle Scholar
  4. Buria L, Albariño R, Villanueva VD (2007) Impact of exotic rainbow trout on the benthic macroinvertebrate community from Andean-Patagonian headwater streams. Fundam Appl Limnol 168:145–154. CrossRefGoogle Scholar
  5. Chadwick MA, Dobberfuhl DR, Benke AC, Huryn AD, Suberkropp K, Thiele JE (2006) Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecol Appl 16:1796–1807.[1796:UASEFB]2.0.CO;2 CrossRefPubMedGoogle Scholar
  6. Chovanec A, Schindler M, Waringer J, Wimmer R (2015) The dragonfly association index (Insecta: Odonata)—a tool for the type-specific assessment of lowland rivers. River Res Appl 31:627–638. CrossRefGoogle Scholar
  7. Code A (2017) How Our Gardening Choices Affect the Health of Our Waterways. WINGS: ESSAYS ON INVERTEBRATE CONSERVATION, 5–10.Google Scholar
  8. Couceiro SRM, Hamada N, Luz SLB, Forsberg BR, Pimentel TP (2007) Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575:271–284. CrossRefGoogle Scholar
  9. de Oliveira-Junior JMB, Shimano Y, Gardner TA, Hughes RM, De Marco L Jr, Juen L (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40:733–744. CrossRefGoogle Scholar
  10. de Oliveira-Junior JMB, De Marco P, Dias-Silva K, Leitão RP, Leal CG, Pompeu PS, Gardner TA, Hughes RM, Juen L (2017) Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica 66:31–39. CrossRefGoogle Scholar
  11. De Sherbinin A, Rahman A, Barbieri A, Fotso J, Zhu Y (2009) Urban population-development- environment dynamics in the developing world: case studies and lessons learned. Committee for International Cooperation in National Research in Demography (CICRED), ParisGoogle Scholar
  12. Dias-Silva K, Cabette HSR, Juen L, De Marco P Jr (2010) The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia 27:918–930. CrossRefGoogle Scholar
  13. Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172. CrossRefGoogle Scholar
  14. Dumakude N, Graham M (2017) Assessing wetland health using a newly developed land cover citizen science tool for use by local people who are not wetland specialists. S Afr J Environ Educ 33:71. CrossRefGoogle Scholar
  15. Dutra S, De Marco P (2015) Bionomic differences in odonates and their influence on the efficiency of indicator species of environmental quality. Ecol Indic 49:132–142. CrossRefGoogle Scholar
  16. Feitosa MAC, Julião GM, Costa MDP, Belém B, Pessoa FAC (2012) Diversity of sand flies in domiciliary environment of Santarém, state of Pará, Brazil: species composition and abundance patterns in rural and urban areas. Acta Amaz 42:507–514. CrossRefGoogle Scholar
  17. Fontanarrosa MS, Collantes MB, Bachmann AO (2009) Seasonal patterns of the insect community structure in urban rain pools of temperate Argentina. J Insect Sci 9:1–17. CrossRefGoogle Scholar
  18. Frankie GW, Ehler LE (1978) Ecology of Insects in Urban Environments. Annu Rev Entomol 23:367–387. CrossRefGoogle Scholar
  19. Goertzen D, Suhling F (2013) Promoting dragonfly diversity in cities: major determinants and implications for urban pond design. J Insect Conserv 17:399–409. CrossRefGoogle Scholar
  20. Golfieri B, Hardersen S, Maiolini B, Surian N (2016) Odonates as indicators of the ecological integrity of the river corridor: development and application of the odonate river index (ORI) in northern Italy. Ecol Indic 61:234–247. CrossRefGoogle Scholar
  21. Hale R, Coleman R, Pettigrove V, Swearer SE (2015) Identifying, preventing and mitigating ecological traps to improve the management of urban aquatic ecosystems. J Appl Ecol 52:928–939. CrossRefGoogle Scholar
  22. Hassall C (2014) The ecology and biodiversity of urban ponds. Wiley Interdiscip Rev Water 1:187–206. CrossRefGoogle Scholar
  23. Henn M, Nichols H, Zhang Y, Bonner TH (2014) Effect of artificial light on the drift of aquatic insects in urban central Texas streams. J Freshw Ecol 29:307–318. CrossRefGoogle Scholar
  24. Hepp LU, Restello RM, Milesi SV, Biasi C, Molozzi J (2013) Distribution of aquatic insects in urban headwater streams. Acta Limnol Bras 25:1–09. CrossRefGoogle Scholar
  25. Hilsenhoff WL (1977) Use of arthropods to evaluate water quality of streams. Wisconsin Department of Natural Resources. Tech Bull 100:1–14Google Scholar
  26. Hilsenhoff WL (1988) Rapid field assessment of organic pollution with a family-level biotic index. J North Am Benthol Soc 7:65–68. CrossRefGoogle Scholar
  27. Holmes PM, Esler KJ, Richardson DM, Witkowski ETF (2008) Guidelines for improved management of riparian zones invaded by alien plants in South Africa. S Afr J Bot 74:538–552. CrossRefGoogle Scholar
  28. Holtmann L, Juchem M, Brüggeshemke J, Möhlmeyer A, Fartmann T (2018) Stormwater ponds promote dragonfly (Odonata) species richness and density in urban areas. Ecol Eng 118:1–11. CrossRefGoogle Scholar
  29. Howard G (1999) Especies invasoras y humedales. Ramsar COP7 DOC 24:1–11Google Scholar
  30. Jones EL, Leather SR (2012) Invertebrates in urban areas: a review. Eur J Entomol 109:463–478. CrossRefGoogle Scholar
  31. Kadoya T, Suda SI, Washitani I (2004) Dragonfly species richness on man-made ponds: effects of pond size and pond age on newly established assemblages. Ecol Res 19:461–467. CrossRefGoogle Scholar
  32. Kietzka GJ, Pryke JS, Samways MJ (2016) Aerial adult dragonflies are highly sensitive to in-water conditions across an ancient landscape. Divers Distrib 23:14–26. CrossRefGoogle Scholar
  33. Kinvig RG, Samways MJ (2000) Conserving dragonflies (Odonata) along streams running through commercial forestry. Odonatologica 29:195–208Google Scholar
  34. Lenat DR, Penrose DL (1996) History of the EPT taxa richness metric. Bull North Am Benthol Soc 13:557–565Google Scholar
  35. Li L, Zheng B, Liu L (2010) Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ Sci 2:1510–1524. CrossRefGoogle Scholar
  36. Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2:191–198.[0191:ELP]2.0.CO;2 CrossRefGoogle Scholar
  37. Malik P, Hegedüs R, Kriska G, Akesson S, Robertson B, Horvath G (2010) Asphalt surfaces as ecological traps for water-seeking polarotactic insects: how can the polarized light pollution of asphalt surfaces be reduced? In: Asphaltenes: characterization, properties and applications. Nova Science Publishers, Inc., Hauppauge, pp 81–119Google Scholar
  38. Martin PH, Lefebvre MG (1995) Malaria and climate: sensitivity of malaria potential transmission to climate. Ambio 24:200–207Google Scholar
  39. McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835.[0825:EOUAAR]2.0.CO;2 CrossRefGoogle Scholar
  40. Meyer JL, Paul MJ, Taulbee WK (2005) Stream ecosystem function in urbanizing landscapes. J North Am Benthol Soc 24:602–612. CrossRefGoogle Scholar
  41. Miguel TB, Oliveira-Junior JMB, Ligeiro R, Juen L (2017) Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Indic 81:555–566. CrossRefGoogle Scholar
  42. Monteiro-Júnior CS, Juen L, Hamada N (2014) Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landsc Urban Plan 127:28–40. CrossRefGoogle Scholar
  43. Monteiro-Júnior CS, Juen L, Hamada N (2015) Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol Indic 48:303–311. CrossRefGoogle Scholar
  44. Morley SA, Karr JR (2002) Assessing and restoring the health of urban streams in the Puget sound basin. Conserv Biol 16:1498–1509. CrossRefGoogle Scholar
  45. Muzón J, Spinelli GR, Pessacq P, von Ellenrieder N, Estevez AL, Marino PI, Perez Goodwyn PJ, Angrisano EB, Diaz F, Mazzucconi S, Rossi G, Salomón OD (2005) Insectos acuáticos de la Meseta del Somuncura, Patagonia, Argentina. Inventario preliminar. Rev Soc Entomol Argent 64:47–67Google Scholar
  46. Nessimian JL, Venticinque EM, Zuanon J, De Marco P Jr, Gordo M, Fidelis L, Batista JA, Juen L (2008) Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614:117–131. CrossRefGoogle Scholar
  47. New TR (2015) Insect conservation and urban environments. 244p. Cham: Springer. CrossRefGoogle Scholar
  48. Nicasio G, Juen L (2015) Chironomids as indicators in freshwater ecosystems: an assessment of the literature. Insect Conserv Divers 8:393–40.3. CrossRefGoogle Scholar
  49. Niemelä J, MacDonnell MJ (2011) Urban ecology: patterns, processes and applications, vol 374. OUP Oxford, Oxford. CrossRefGoogle Scholar
  50. Nieto C, Ovando XMC, Loyola R, Izquierdo A, Romero F, Molineri C, Rodriguez J, Rueda Martin P, Fernandez H, Manzo V, Miranda MJ (2017) The role of macroinvertebrates for conservation of freshwater systems. Ecol Evol 7:5502–5513. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pereira LR, Cabette HSR, Juen L (2012) Trichoptera as bioindicators of habitat integrity in the Pindaíba river basin, Mato Grosso (Central Brazil). Ann Limnol Int J Limnol 48:295–302. CrossRefGoogle Scholar
  52. Pérez GR, Restrepo JJR (2008) Fundamentos de limnología neotropical (Vol. 15). Universidad de Antioquia. ColombiaGoogle Scholar
  53. Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92:331–362. CrossRefGoogle Scholar
  54. Ramos L, Lozano F, Muzón J (2017) Odonata diversity and synanthropy in urban areas: a case study in Avellaneda City, Buenos Aires, Argentina. Neotrop Entomol 46:144–150. CrossRefPubMedGoogle Scholar
  55. RAMSAR (2008) Resolution X.27: wetlands and urbanization. 10th meeting of the conference of the parties to the convention on wetlands.
  56. Samways MJ (2005) Insect diversity conservation. 356p. Cambridge University Press.
  57. Samways MJ, Sharratt NJ (2010) Recovery of endemic dragonflies after removal of invasive alien trees: contributed paper. Conserv Biol 24:267–277. CrossRefPubMedGoogle Scholar
  58. Samways MJ, Simaika JP (2016) Manual of freshwater assessment for South Africa: dragonfly biotic indexGoogle Scholar
  59. Samways MJ, Steytler NS (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol Conserv 78:279–288. CrossRefGoogle Scholar
  60. Samways MJ, Taylor S (2004) Impacts of invasive alien plants on Red-Listed South African dragonflies (Odonata). S Afr J Sci 100:78–80Google Scholar
  61. Schnack JA, De Francesco FO, Colado UR, Novoa ML, Schnack EJ (2000) Humedales antrópicos: Su contribución para la concervacióm de la biodiversidad en los dominios subtropical y pampásico de la Argentina. Ecol Austral 10:63–80Google Scholar
  62. Segnini S (2003) El uso de los macroinvertebrados bentónicos como indicadores de la condición ecológica de los cuerpos de agua corriente. Ecotropicos 16:45–63Google Scholar
  63. Simaika JP, Samways MJ (2009) An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodivers Conserv 18:1171–1185. CrossRefGoogle Scholar
  64. Simaika JP, Samways MJ (2012) Using dragonflies to monitor and prioritize lotic systems: a South African perspective. Org Divers Evol 12:251–259. CrossRefGoogle Scholar
  65. Smith B (2007) Diversity of adult aquatic insects in Hamilton urban streams and seepages. J Water Atmos 4005:1–19Google Scholar
  66. Smith RF, Lamp WO (2008) Comparison of insect communities between adjacent headwater and main-stem streams in urban and rural watersheds. J North Am Benthol Soc 27:161–175. CrossRefGoogle Scholar
  67. Smith RF, Alexander LC, Lamp WO (2009) Dispersal by terrestrial stages of stream insects in urban watersheds: a synthesis of current knowledge. J North Am Benthol Soc 28:1022–1037. CrossRefGoogle Scholar
  68. Suren AM, McMurtrie S (2005) Assessing the effectiveness of enhancement activities in urban streams: II. Responses of invertebrate communities. River Res Appl 21:439–453. CrossRefGoogle Scholar
  69. Talaga S, Dézerald O, Carteron A, Leroy C, Carrias JF, Céréghino R, Dejean A (2017) Urbanization impacts the taxonomic and functional structure of aquatic macroinvertebrate communities in a small Neotropical city. Urban Ecosyst 20:1001–1009. CrossRefGoogle Scholar
  70. Turpin-Nagel K, Vadas TM (2016) Controls on metal exposure to aquatic organisms in urban streams. Environ Sci Process Impacts 18:956–967. CrossRefPubMedGoogle Scholar
  71. Urban MC, Skelly DK, Burchsted D, Price W, Lowry S (2006) Stream communities across a rural-urban landscape gradient. Divers Distrib 12:337–350. CrossRefGoogle Scholar
  72. Valente-Neto F, De Oliveira RF, Rodrigues ME, Juen L, Swan CM (2016) Toward a practical use of Neotropical odonates as bioindicators: testing congruence across taxonomic resolution and life stages. Ecol Indic 61:952–959. CrossRefGoogle Scholar
  73. Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24:706–723. CrossRefGoogle Scholar
  74. Wu J (2014) Urban ecology and sustainability: the state-of-the-science and future directions. Landsc Urban Plan 125:209–221. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Javier Muzón
    • 1
  • Lía S. Ramos
    • 1
  • Alejandro del Palacio
    • 1
  1. 1.Laboratorio de Biodiversidad y Genética Ambiental (BioGeA)UNDAVBuenos AiresArgentina

Personalised recommendations