Controversies in Deep Brain Stimulation Surgery: Micro-Electrode Recordings

  • Jeroen HabetsEmail author
  • Bethany Isaacs
  • Saman Vinke
  • Pieter Kubben


Deep brain stimulation (DBS) of the subthalamic nucleus (STN) was first applied as a neurosurgical intervention technique for Parkinson’s disease (PD) in the 1990s and has since become a widely accepted practice. Bilateral STN-DBS has been proven to be significantly improve levodopa-responsive parkinsonian symptoms and quality of life compared to best medical treatment alone [1, 2]. DBS is generally considered in patients only when pharmacological treatment does not respond in sufficient effect any longer or leads to unacceptable adverse effects. Stimulation of the subthalamic nucleus (STN) is the most common practice since it results in more time in well-treated ‘ON-condition’, though the internal segment of the globus pallidus (GPi) is also a possibility [3, 4]. While DBS of the STN specifically is effective for a majority of patients in relieving the motor related symptoms of PD, a fraction of patients will fail to witness such beneficial effects. Moreover, DBS patients may develop a number of side effects spanning a range of domains, from speech and gait impairments to cognitive decline and impulse control disorders, as well as psychiatric and emotional disturbances.


Parkinson’s disease Deep brain stimulation MER guided MRI guided 


  1. 1.
    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355(9):896–908.PubMedCrossRefGoogle Scholar
  2. 2.
    Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011;68(2):165.PubMedCrossRefGoogle Scholar
  5. 5.
    Bot M, Schuurman PR, Odekerken VJJ, Verhagen R, Contarino FM, De Bie RMA, et al. Deep brain stimulation for Parkinson’s disease: defining the optimal location within the subthalamic nucleus. J Neurol Neurosurg Psychiatry. 2018;89(5):493–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Nakajima T, Zrinzo L, Foltynie T, Olmos IA, Taylor C, Hariz MI, et al. MRI-guided subthalamic nucleus deep brain stimulation without microelectrode recording: can we dispense with surgery under local anaesthesia? Stereotact Funct Neurosurg. 2011;89(5):318–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Williams A, Gill S, Varma T, Jenkinson C, Quinn N, Mitchell R, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 2010;9(6):581–91.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bour LJ, Contarino MF, Foncke EM, de Bie RM, van den Munckhof P, Speelman JD, et al. Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir. 2010;152(12):2069–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, et al. Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery. 2010;67(3 Suppl Operative):ons213–21; discussion ons21.PubMedGoogle Scholar
  11. 11.
    Amirnovin R, Williams ZM, Cosgrove GR, Eskandar EN. Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery. 2006;58(1 Suppl):ONS96–102; discussion ONS96–102.PubMedGoogle Scholar
  12. 12.
    Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, et al. Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Neurosurgery. 2007;61(5 Suppl 2):346–55; discussion 55–7.PubMedGoogle Scholar
  13. 13.
    Schlaier JR, Habermeyer C, Warnat J, Lange M, Janzen A, Hochreiter A, et al. Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus. Acta Neurochir. 2011;153(12):2307–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Reck C, Maarouf M, Wojtecki L, Groiss SJ, Florin E, Sturm V, et al. Clinical outcome of subthalamic stimulation in Parkinson’s disease is improved by intraoperative multiple trajectories microelectrode recording. J Neurol Surg A Cent Eur Neurosurg. 2012;73(6):377–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Schlaier JR, Habermeyer C, Janzen A, Fellner C, Hochreiter A, Proescholdt M, et al. The influence of intraoperative microelectrode recordings and clinical testing on the location of final stimulation sites in deep brain stimulation for Parkinson’s disease. Acta Neurochir. 2013;155(2):357–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Longhi M, Ricciardi G, Tommasi G, Nicolato A, Foroni R, Bertolasi L, et al. The role of 3T magnetic resonance imaging for targeting the human subthalamic nucleus in deep brain stimulation for Parkinson disease. J Neurol Surg A Cent Eur Neurosurg. 2015;76(3):181–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rabie A, Verhagen Metman L, Slavin KV. Using “functional” target coordinates of the subthalamic nucleus to assess the indirect and direct methods of the preoperative planning: do the anatomical and functional targets coincide? Brain Sci. 2016;6(4):E65.PubMedCrossRefGoogle Scholar
  18. 18.
    Nowacki A, Debove I, Fiechter M, Rossi F, Oertel MF, Wiest R, et al. Targeting accuracy of the subthalamic nucleus in deep brain stimulation surgery: comparison between 3 T T2-weighted magnetic resonance imaging and microelectrode recording results. Oper Neurosurg (Hagerstown). 2018;15(1):66–71.CrossRefGoogle Scholar
  19. 19.
    Lozano CS, Ranjan M, Boutet A, Xu DS, Kucharczyk W, Fasano A, et al. Imaging alone versus microelectrode recording–guided targeting of the STN in patients with Parkinson’s disease. J Neurosurg. 2018:1–6. Scholar
  20. 20.
    Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, et al. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. 2011;82(4):358–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Aviles-Olmos I, Kefalopoulou Z, Tripoliti E, Candelario J, Akram H, Martinez-Torres I, et al. Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry. 2014;85(12):1419–25.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Liu X, Zhang J, Fu K, Gong R, Chen J, Zhang J. Microelectrode recording-guided versus intraoperative magnetic resonance imaging-guided subthalamic nucleus deep brain stimulation surgery for Parkinson disease: a 1-year follow-up study. World Neurosurg. 2017;107:900–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Brodsky MA, Anderson S, Murchison C, Seier M, Wilhelm J, Vederman A, et al. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology. 2017;89(19):1944–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee PS, Weiner GM, Corson D, Kappel J, Chang YF, Suski VR, et al. Outcomes of interventional-MRI versus microelectrode recording-guided subthalamic deep brain stimulation. Front Neurol. 2018;9:241.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Polanski WH, Martin KD, Engellandt K, von Kummer R, Klingelhoefer L, Fauser M, et al. Accuracy of subthalamic nucleus targeting by T2, FLAIR and SWI-3-Tesla MRI confirmed by microelectrode recordings. Acta Neurochir. 2015;157(3):479–86.PubMedCrossRefGoogle Scholar
  26. 26.
    McEvoy J, Ughratdar I, Schwarz S, Basu S. Electrophysiological validation of STN-SNr boundary depicted by susceptibility-weighted MRI. Acta Neurochir. 2015;157(12):2129–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Verhagen R, Schuurman PR, van den Munckhof P, Contarino MF, de Bie RM, Bour LJ. Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images. J Neural Eng. 2016;13(6):066009.PubMedCrossRefGoogle Scholar
  28. 28.
    Bot M, Bour L, de Bie RM, Contarino MF, Schuurman PR, van den Munckhof P. Can we rely on susceptibility-weighted imaging for subthalamic nucleus identification in deep brain stimulation surgery? Neurosurgery. 2016;78(3):353–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Bus S, van den Munckhof P, Bot M, Pal G, Ouyang B, Sani S, et al. Borders of STN determined by MRI versus the electrophysiological STN. A comparison using intraoperative CT. Acta Neurochir. 2018;160(2):373–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Brunenberg EJ, Moeskops P, Backes WH, Pollo C, Cammoun L, Vilanova A, et al. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PLoS One. 2012;7(6):e39061.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hariz MI. Complications of deep brain stimulation surgery. Mov Disord. 2002;17(Suppl 3):S162–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Zrinzo L, Hariz M, Hyam JA, Foltynie T, Limousin P. Letter to the editor: a paradigm shift toward MRI-guided and MRI-verified DBS surgery. J Neurosurg. 2016;124(4):1135–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen SY, Lee CC, Lin SH, Hsin YL, Lee TW, Yen PS, et al. Microelectrode recording can be a good adjunct in magnetic resonance image-directed subthalamic nucleus deep brain stimulation for parkinsonism. Surg Neurol. 2006;65(3):253–60; discussion 60–1.PubMedCrossRefGoogle Scholar
  34. 34.
    Patel NK, Heywood P, O’Sullivan K, Love S, Gill SS. MRI-directed subthalamic nucleus surgery for Parkinson’s disease. Stereotact Funct Neurosurg. 2002;78(3–4):132–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Contarino MF, Bour LJ, Verhagen R, Lourens MA, de Bie RM, van den Munckhof P, et al. Directional steering: a novel approach to deep brain stimulation. Neurology. 2014;83(13):1163–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Ho AL, Ali R, Connolly ID, Henderson JM, Dhall R, Stein SC, et al. Awake versus asleep deep brain stimulation for Parkinson’s disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry. 2018;89(7):687–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Alterman RL, Weisz D. Microelectrode recording during deep brain stimulation and ablative procedures. Mov Disord. 2012;27(11):1347–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Chandran AS, Bynevelt M, Lind CR. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J Neurosurg. 2016;124(1):96–105.PubMedCrossRefGoogle Scholar
  39. 39.
    Federau C, Gallichan D. Motion-correction enabled ultra-high resolution in-vivo 7T-MRI of the brain. PLoS One. 2016;11(5):e0154974.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Keuken MC, Schafer A, Forstmann BU. Can we rely on susceptibility-weighted imaging (SWI) for subthalamic nucleus identification in deep brain stimulation surgery? Neurosurgery. 2016;79(6):e945–e6.PubMedCrossRefGoogle Scholar
  41. 41.
    Lusebrink F, Wollrab A, Speck O. Cortical thickness determination of the human brain using high resolution 3T and 7T MRI data. NeuroImage. 2013;70:122–31.PubMedCrossRefGoogle Scholar
  42. 42.
    McNulty J. MRI. From picture to proton. By D W McRobbie, E A Moore, M J Graves and M R Prince, pp. xi + 359, 2003 (Cambridge University Press, Cambridge, UK), £34.95 ISBN 0 521 52319 2. Br J Radiol. 2004;77(921):800–1.CrossRefGoogle Scholar
  43. 43.
    Robitaille PML. Ultra high field magnetic resonance imaging: a historical perspective. Ultra high field magnetic resonance imaging. Boston: Springer; 2006. p. 1–17.CrossRefGoogle Scholar
  44. 44.
    Pohmann R, Bause J, Mirkes C, Eschelbach M, Engel E-M, Scheffler K. Ultrahigh resolution anatomical brain imaging at 9.4 T using prospective motion correction. MAGMA. 2015;28(Suppl. 1):S155.Google Scholar
  45. 45.
    van der Zwaag W, Schafer A, Marques JP, Turner R, Trampel R. Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR Biomed. 2016;29(9):1274–88.PubMedCrossRefGoogle Scholar
  46. 46.
    van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur J Radiol. 2013;82(5):708–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Alkemade A, de Hollander G, Keuken MC, Schafer A, Ott DVM, Schwarz J, et al. Comparison of T2∗-weighted and QSM contrasts in Parkinson’s disease to visualize the STN with MRI. PLoS One. 2017;12(4):e0176130.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67(6):1745–56; discussion 56.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Alkemade A, Schnitzler A, Forstmann BU. Topographic organization of the human and non-human primate subthalamic nucleus. Brain Struct Funct. 2015;220(6):3075–86.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cho ZH, Oh SH, Kim JM, Park SY, Kwon DH, Jeong HJ, et al. Direct visualization of Parkinson’s disease by in vivo human brain imaging using 7.0T magnetic resonance imaging. Mov Disord. 2011;26(4):713–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Dula AN, Welch EB, Creasy JL, Gatenby JC, Stringer EA, Chen LM, et al. Challenges and opportunities of ultra-high field MRI. In: Van Toi V, Khoa TQD, editors. The third international conference on the development of biomedical engineering in Vietnam. IFMBE proceedings, vol. 27. Berlin: Springer; 2010. p. 1–5.CrossRefGoogle Scholar
  52. 52.
    Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. NeuroImage. 2012;62(2):1241–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Keuken MC, Bazin PL, Backhouse K, Beekhuizen S, Himmer L, Kandola A, et al. Effects of aging on T(1), T(2)∗, and QSM MRI values in the subcortex. Brain Struct Funct. 2017;222(6):2487–505.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ostrem JL, Galifianakis NB, Markun LC, Grace JK, Martin AJ, Starr PA, et al. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clin Neurol Neurosurg. 2013;115(6):708–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Ben-Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64(4):754–62; discussion 62–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Xiaowu H, Xiufeng J, Xiaoping Z, Bin H, Laixing W, Yiqun C, et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord. 2010;16(2):96–100.PubMedCrossRefGoogle Scholar
  57. 57.
    McClelland S 3rd. A cost analysis of intraoperative microelectrode recording during subthalamic stimulation for Parkinson’s disease. Mov Disord. 2011;26(8):1422–7.PubMedCrossRefGoogle Scholar
  58. 58.
    de Hollander G, Keuken MC, van der Zwaag W, Forstmann BU, Trampel R. Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T. Hum Brain Mapp. 2017;38(6):3226–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Phys Med Biol. 2007;52(7):R15–55.PubMedCrossRefGoogle Scholar
  60. 60.
    Vaughan JT, Griffiths JR, editors. RF coils for MRI. Hoboken: Wiley; 2012.Google Scholar
  61. 61.
    Maclaren J, Armstrong BS, Barrows RT, Danishad KA, Ernst T, Foster CL, et al. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS One. 2012;7(11):e48088.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Forstmann BU, Isaacs BR, Temel Y. Ultra high field MRI-guided deep brain stimulation. Trends Biotechnol. 2017;35(10):904–7.PubMedCrossRefGoogle Scholar
  63. 63.
    O’Gorman RL, Jarosz JM, Samuel M, Clough C, Selway RP, Ashkan K. CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg. 2009;87(4):205–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Kochanski RB, Sani S. Awake versus asleep deep brain stimulation surgery: technical considerations and critical review of the literature. Brain Sci. 2018;8(1):E17.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen T, Mirzadeh Z, Ponce FA. “Asleep” deep brain stimulation surgery: a critical review of the literature. World Neurosurg. 2017;105:191–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Sidiropoulos C, Rammo R, Merker B, Mahajan A, LeWitt P, Kaminski P, et al. Intraoperative MRI for deep brain stimulation lead placement in Parkinson’s disease: 1 year motor and neuropsychological outcomes. J Neurol. 2016;263(6):1226–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119(2):301–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Chen T, Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA. “Asleep” deep brain stimulation for essential tremor. J Neurosurg. 2016;124(6):1842–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Mirzadeh Z, Chapple K, Lambert M, Evidente VG, Mahant P, Ospina MC, et al. Parkinson’s disease outcomes after intraoperative CT-guided “asleep” deep brain stimulation in the globus pallidus internus. J Neurosurg. 2016;124(4):902–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Mirzadeh Z, Ponce FA. Reply: DBS with versus without MER: clinical equipoise or malpractice? Mov Disord. 2015;30(3):439–41.PubMedCrossRefGoogle Scholar
  71. 71.
    Ostrem JL, Ziman N, Galifianakis NB, Starr PA, Luciano MS, Katz M, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg. 2016;124(4):908–16.PubMedCrossRefGoogle Scholar
  72. 72.
    Martin AJ, Starr PA, Ostrem JL, Larson PS. Hemorrhage detection and incidence during magnetic resonance-guided deep brain stimulator implantations. Stereotact Funct Neurosurg. 2017;95(5):307–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Slavin KV, Thulborn KR, Wess C, Nersesyan H. Direct visualization of the human subthalamic nucleus with 3T MR imaging. AJNR Am J Neuroradiol. 2006;27(1):80–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeroen Habets
    • 1
    • 2
    Email author
  • Bethany Isaacs
    • 1
    • 2
    • 3
  • Saman Vinke
    • 4
  • Pieter Kubben
    • 1
    • 2
  1. 1.Department of NeurosurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
  2. 2.Translational Neuroscience LabSchool for Mental Health and Neuroscience, Maastricht UniversityMaastrichtThe Netherlands
  3. 3.Integrative Model-based Cognitive Neuroscience Research UnitUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Department of NeurosurgeryRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations