Advertisement

Gastrointestinal Stromal Tumor (GIST): Diagnosis and Treatment

  • Attila Kollár
  • Pedro Nazareth AguiarJr.
  • Nora Manoukian Forones
  • Ramon Andrade De MelloEmail author
Chapter

Abstract

Gastrointestinal stromal tumor is the most common mesenchymal neoplasm arising the gastrointestinal tract. The primary tumor ist most common in the stomach (60–70%), followed by the small intestine (20–25%), colon and rectum (5%), and esophagus (less than 5%). The median age at diagnosis is between 60 and 65 years. Histologically, GIST is characterized by its immunopositivity for CD117 (KIT). Clinically, there is a paucity of specific symptoms and a majority of cases becomes symptomatic after local compression caused by tumor mass. Surgery is the main treatment for localized disease. The indication for adjuvant imatinib is based upon risk factors such as primary tumor site, tumor size and number of mitosis. KIT-targeted tyrosine kinase inhibitors (TKI) are the cornerstone for the treatment of metastatic disease. Imatinib is the drug of choice in the first-line setting. Sunitinib, regorafenib, and pazopanib are studied further-line treatment optionse. Immunotherapy studies are ongoing for TKI-refractory patients.

Keywords

Gastrointestinal stromal tumors Molecular targeted therapy Surgery 

Abbreviations

GIST:

Gastrointestinal Stromal Tumor

PDGFRA:

Platelet-derived Growth Factor Receptor Alpha

NF-1:

Neurofibromatosis type I

SDHB/C/D:

Succinate Dehydrogenase Complex Subunit B, C or D

RTK:

Receptor Tyrosine Kinase

SMA:

Smooth Muscle Actin

SCF:

Stem Cell Factor

DOG1:

Discovered on GIST

SDH:

Succinate Dehydrogenase

ESMO:

European Society for Medical Oncology

CT:

Computed Tomography

MRI:

Magnetic Resonance Image

PET:

Positron Emission Tomography

AFIP:

Armed Forced Institute of Pathology

NIH:

National Institutes of Health

HPF:

High Power Fields

NA:

Not Available

EUS:

Endoscopic Ultrasound

RFS:

Relapse-free Survival

SSG:

Scandinavian Sarcoma Group

CI:

Confidence Internal

ATP:

Adenosine Triphosphate

NCCN:

National Cancer Comprehensive Network

TSH:

Thyroid-Stimulating Hormone

BSC:

Best Supportive Care

TAM:

Tumor-associated macrophages

CTLA-4:

Cytotoxic T-lymphocyte Associated Protein 4

PD-1:

Programmed-death Receptor 1

PD-L1:

Programmed-death Receptor Ligand 1

ITT:

Intention-to-treat

RECIST:

Response Evaluation Criteria In Solid Tumors

References

  1. 1.
    Miettinen M, Lasota J (2001) Gastrointestinal stromal tumors – definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 438(1):1–12CrossRefGoogle Scholar
  2. 2.
    Thomas RM, Sobin LH (1995) Gastrointestinal cancer. Cancer 75(1 Suppl):154–170CrossRefGoogle Scholar
  3. 3.
    Gatta G et al (2011) Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer 47(17):2493–2511CrossRefGoogle Scholar
  4. 4.
    Steigen SE, Eide TJ (2006) Trends in incidence and survival of mesenchymal neoplasm of the digestive tract within a defined population of northern Norway. APMIS 114(3):192–200CrossRefGoogle Scholar
  5. 5.
    Agaimy A et al (2007) Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol 31(1):113–120CrossRefGoogle Scholar
  6. 6.
    Tran T, Davila JA, El-Serag HB (2005) The epidemiology of malignant gastrointestinal stromal tumors: an analysis of 1,458 cases from 1992 to 2000. Am J Gastroenterol 100(1):162–168CrossRefGoogle Scholar
  7. 7.
    Tryggvason G et al (2005) Gastrointestinal stromal tumors in Iceland, 1990–2003: the icelandic GIST study, a population-based incidence and pathologic risk stratification study. Int J Cancer 117(2):289–293CrossRefGoogle Scholar
  8. 8.
    Pappo AS, Janeway KA (2009) Pediatric gastrointestinal stromal tumors. Hematol Oncol Clin North Am 23(1):15–34. viiCrossRefGoogle Scholar
  9. 9.
    Maeyama H et al (2001) Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 120(1):210–215CrossRefGoogle Scholar
  10. 10.
    Miettinen M et al (2006) Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol 30(1):90–96CrossRefGoogle Scholar
  11. 11.
    Stratakis CA, Carney JA (2009) The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J Intern Med 266(1):43–52CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Agarwal R, Robson M (2009) Inherited predisposition to gastrointestinal stromal tumor. Hematol Oncol Clin North Am 23(1):1–13. viiCrossRefGoogle Scholar
  13. 13.
    Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23(2):70–83CrossRefGoogle Scholar
  14. 14.
    Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 130(10):1466–1478PubMedGoogle Scholar
  15. 15.
    Chabot B et al (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335(6185):88–89CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huizinga JD et al (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373(6512):347–349CrossRefGoogle Scholar
  17. 17.
    Miettinen M, Sobin LH, Sarlomo-Rikala M (2000) Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Mod Pathol 13(10):1134–1142CrossRefGoogle Scholar
  18. 18.
    Sircar K et al (1999) Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am J Surg Pathol 23(4):377–389CrossRefGoogle Scholar
  19. 19.
    Fletcher C, Bridge JA, Hogendoorn PCW, Mertens F (2013) In: Fred T, Bosman ESJ, Lakhani SR, Ohgaki H (eds) WHO classification of tumours of soft tissue and bone, 4th edn. International Agency for Research in Cancer, LyonGoogle Scholar
  20. 20.
    Medeiros F et al (2004) KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol 28(7):889–894CrossRefGoogle Scholar
  21. 21.
    Miettinen M, Sobin LH, Lasota J (2005) Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 29(1):52–68CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hirota S et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580CrossRefGoogle Scholar
  23. 23.
    Rubin BP, Fletcher JA, Fletcher CD (2000) Molecular insights into the histogenesis and pathogenesis of gastrointestinal stromal tumors. Int J Surg Pathol 8(1):5–10CrossRefGoogle Scholar
  24. 24.
    Miettinen M, Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 13(3):205–220CrossRefGoogle Scholar
  25. 25.
    Fletcher CD et al (2002) Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33(5):459–465CrossRefGoogle Scholar
  26. 26.
    Demetri GD et al (2010) NCCN task force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Cancer Netw 8(Suppl 2):S1–S41; quiz S42-4Google Scholar
  27. 27.
    Debiec-Rychter M et al (2004) Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol 202(4):430–438CrossRefGoogle Scholar
  28. 28.
    Corless CL et al (2005) PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 23(23):5357–5364CrossRefGoogle Scholar
  29. 29.
    Miselli F et al (2008) PDGFRA immunostaining can help in the diagnosis of gastrointestinal stromal tumors. Am J Surg Pathol 32(5):738–743CrossRefGoogle Scholar
  30. 30.
    Peterson MR et al (2006) Strong PDGFRA positivity is seen in GISTs but not in other intra-abdominal mesenchymal tumors: immunohistochemical and mutational analyses. Appl Immunohistochem Mol Morphol 14(4):390–396CrossRefGoogle Scholar
  31. 31.
    Espinosa I et al (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32(2):210–218CrossRefGoogle Scholar
  32. 32.
    Pantaleo MA et al (2011) SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J Natl Cancer Inst 103(12):983–987CrossRefGoogle Scholar
  33. 33.
    Gaal J et al (2011) SDHB immunohistochemistry: a useful tool in the diagnosis of carney-stratakis and carney triad gastrointestinal stromal tumors. Mod Pathol 24(1):147–151CrossRefGoogle Scholar
  34. 34.
    Emile JF et al (2004) Clinicopathologic, phenotypic, and genotypic characteristics of gastrointestinal mesenchymal tumors. Clin Gastroenterol Hepatol 2(7):597–605CrossRefGoogle Scholar
  35. 35.
    Singer S et al (2002) Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol 20(18):3898–3905CrossRefGoogle Scholar
  36. 36.
    Martin J et al (2005) Deletions affecting codons 557-558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol 23(25):6190–6198CrossRefGoogle Scholar
  37. 37.
    Heinrich MC et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21(23):4342–4349CrossRefGoogle Scholar
  38. 38.
    Heinrich MC et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299(5607):708–710CrossRefGoogle Scholar
  39. 39.
    Janeway KA et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 108(1):314–318CrossRefGoogle Scholar
  40. 40.
    Agaimy A et al (2009) V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol 62(7):613–616CrossRefGoogle Scholar
  41. 41.
    Falchook GS et al (2013) BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 4(2):310–315CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pink D et al (2005) Severe hypoglycemia caused by paraneoplastic production of IGF-II in patients with advanced gastrointestinal stromal tumors: a report of two cases. J Clin Oncol 23(27):6809–6811CrossRefGoogle Scholar
  43. 43.
    DeMatteo RP et al (2000) Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231(1):51–58CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    ESMO / European Sarcoma Network Working Group (2012) Gastrointestinal stromal tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 23(Suppl 7):vii49–vii55Google Scholar
  45. 45.
    Choi YR et al (2014) Differentiation of large (>/= 5 cm) gastrointestinal stromal tumors from benign subepithelial tumors in the stomach: radiologists’ performance using CT. Eur J Radiol 83(2):250–260CrossRefGoogle Scholar
  46. 46.
    Beham AW et al (2012) Gastrointestinal stromal tumors. Int J Color Dis 27(6):689–700CrossRefGoogle Scholar
  47. 47.
    Young H et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35(13):1773–1782CrossRefGoogle Scholar
  48. 48.
    Akahoshi K et al (2007) Preoperative diagnosis of gastrointestinal stromal tumor by endoscopic ultrasound-guided fine needle aspiration. World J Gastroenterol 13(14):2077–2082CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sepe PS, Brugge WR (2009) A guide for the diagnosis and management of gastrointestinal stromal cell tumors. Nat Rev Gastroenterol Hepatol 6(6):363–371CrossRefGoogle Scholar
  50. 50.
    Miettinen M et al (2006) Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am J Surg Pathol 30(4):477–489CrossRefGoogle Scholar
  51. 51.
    Emory TS et al (1999) Prognosis of gastrointestinal smooth-muscle (stromal) tumors: dependence on anatomic site. Am J Surg Pathol 23(1):82–87CrossRefGoogle Scholar
  52. 52.
    Gold JS et al (2009) Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. Lancet Oncol 10(11):1045–1052CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hohenberger P et al (2010) Pattern of recurrence in patients with ruptured primary gastrointestinal stromal tumour. Br J Surg 97(12):1854–1859CrossRefGoogle Scholar
  54. 54.
    Joensuu H et al (2012) Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts. Lancet Oncol 13(3):265–274CrossRefGoogle Scholar
  55. 55.
    Dematteo RP et al (2008) Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST). Cancer 112(3):608–615CrossRefGoogle Scholar
  56. 56.
    Edge S (2010) AJCC cancer staging manual, 7th edn. Springer, New YorkGoogle Scholar
  57. 57.
    Casali PG et al (2009) Gastrointestinal stromal tumours: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20(Suppl 4):64–67PubMedGoogle Scholar
  58. 58.
    Pidhorecky I et al (2000) Gastrointestinal stromal tumors: current diagnosis, biologic behavior, and management. Ann Surg Oncol 7(9):705–712CrossRefGoogle Scholar
  59. 59.
    Huguet KL et al (2008) Laparoscopic gastric gastrointestinal stromal tumor resection: the mayo clinic experience. Arch Surg 143(6):587–590; discussion 591CrossRefGoogle Scholar
  60. 60.
    Everett M, Gutman H (2008) Surgical management of gastrointestinal stromal tumors: analysis of outcome with respect to surgical margins and technique. J Surg Oncol 98(8):588–593CrossRefGoogle Scholar
  61. 61.
    Eisenberg BL et al (2009) Phase II trial of neoadjuvant/adjuvant imatinib mesylate (IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor (GIST): early results of RTOG 0132/ACRIN 6665. J Surg Oncol 99(1):42–47CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Blay JY et al (2007) Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: the French Sarcoma Group. J Clin Oncol 25(9):1107–1113CrossRefGoogle Scholar
  63. 63.
    Wang D et al (2012) Phase II trial of neoadjuvant/adjuvant imatinib mesylate for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumors: long-term follow-up results of Radiation Therapy Oncology Group 0132. Ann Surg Oncol 19(4):1074–1080CrossRefGoogle Scholar
  64. 64.
    Doyon C et al (2012) Prolonged therapy with imatinib mesylate before surgery for advanced gastrointestinal stromal tumor results of a phase II trial. Int J Surg Oncol 2012:761576PubMedPubMedCentralGoogle Scholar
  65. 65.
    Dematteo RP et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–1104CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Joensuu H et al (2012) One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA 307(12):1265–1272CrossRefGoogle Scholar
  67. 67.
    Casali PG, Le Cesne A, Velasco AP et al (2013) Imatinib failure-free survival (IFS) in patients with localized gastrointestinal stromal tumors (GIST) treated with adjuvant imatinib (IM): the EORTC/AGITG/FSG/GEIS/ISG randomized controlled phase III trial (suppl;abstract 10500). J Clin Oncol:31Google Scholar
  68. 68.
    Debiec-Rychter M et al (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42(8):1093–1103CrossRefGoogle Scholar
  69. 69.
    Ryan DP et al (2002) A phase II and pharmacokinetic study of ecteinascidin 743 in patients with gastrointestinal stromal tumors. Oncologist 7(6):531–538CrossRefGoogle Scholar
  70. 70.
    Edmonson JH et al (2002) Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Investig 20(5–6):605–612CrossRefGoogle Scholar
  71. 71.
    Trent JC et al (2003) A two-arm phase II study of temozolomide in patients with advanced gastrointestinal stromal tumors and other soft tissue sarcomas. Cancer 98(12):2693–2699CrossRefGoogle Scholar
  72. 72.
    Druker BJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037CrossRefGoogle Scholar
  73. 73.
    Heinrich MC et al (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96(3):925–932CrossRefGoogle Scholar
  74. 74.
    Joensuu H et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052–1056CrossRefGoogle Scholar
  75. 75.
    van Oosterom AT et al (2002) Update of phase I study of imatinib (STI571) in advanced soft tissue sarcomas and gastrointestinal stromal tumors: a report of the EORTC soft tissue and bone sarcoma group. Eur J Cancer 38(Suppl 5):S83–S87CrossRefGoogle Scholar
  76. 76.
    Demetri GD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(7):472–480CrossRefGoogle Scholar
  77. 77.
    Verweij J et al (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364(9440):1127–1134CrossRefGoogle Scholar
  78. 78.
    Blanke CD et al (2008) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 26(4):626–632CrossRefGoogle Scholar
  79. 79.
    Demetri GD et al (2009) Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol 27(19):3141–3147CrossRefGoogle Scholar
  80. 80.
    Yoo C et al (2010) Cross-sectional study of imatinib plasma trough levels in patients with advanced gastrointestinal stromal tumors: impact of gastrointestinal resection on exposure to imatinib. J Clin Oncol 28(9):1554–1559CrossRefGoogle Scholar
  81. 81.
    Heinrich MC et al (2008) Correlation of kinase genotype and clinical outcome in the North American intergroup phase III trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 study by cancer and leukemia group B and Southwest oncology group. J Clin Oncol 26(33):5360–5367CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cassier PA et al (2012) Outcome of patients with platelet-derived growth factor receptor alpha-mutated gastrointestinal stromal tumors in the tyrosine kinase inhibitor era. Clin Cancer Res 18(16):4458–4464CrossRefGoogle Scholar
  83. 83.
    Kerkela R et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12(8):908–916CrossRefGoogle Scholar
  84. 84.
    Noens L et al (2009) Prevalence, determinants, and outcomes of nonadherence to imatinib therapy in patients with chronic myeloid leukemia: the ADAGIO study. Blood 113(22):5401–5411CrossRefGoogle Scholar
  85. 85.
    Zalcberg JR et al (2005) Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer 41(12):1751–1757CrossRefGoogle Scholar
  86. 86.
    Demetri GD et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368(9544):1329–1338CrossRefGoogle Scholar
  87. 87.
    Demetri GD et al (2012) Complete longitudinal analyses of the randomized, placebo-controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumor following imatinib failure. Clin Cancer Res 18(11):3170–3179CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Desai J et al (2006) Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann Intern Med 145(9):660–664CrossRefGoogle Scholar
  89. 89.
    Antonescu CR et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11(11):4182–4190CrossRefGoogle Scholar
  90. 90.
    Wardelmann E et al (2006) Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 12(6):1743–1749CrossRefGoogle Scholar
  91. 91.
    Desai J et al (2007) Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res 13(18 Pt 1):5398–5405CrossRefGoogle Scholar
  92. 92.
    Liegl B et al (2008) Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 216(1):64–74CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Debiec-Rychter M et al (2005) Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128(2):270–279CrossRefGoogle Scholar
  94. 94.
    Miselli FC et al (2007) c-Kit/PDGFRA gene status alterations possibly related to primary imatinib resistance in gastrointestinal stromal tumors. Clin Cancer Res 13(8):2369–2377CrossRefGoogle Scholar
  95. 95.
    Eechoute K et al (2011) Environmental and genetic factors affecting transport of imatinib by OATP1A2. Clin Pharmacol Ther 89(6):816–820CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Guo T et al (2009) Mechanisms of sunitinib resistance in gastrointestinal stromal tumors harboring KITAY502-3ins mutation: an in vitro mutagenesis screen for drug resistance. Clin Cancer Res 15(22):6862–6870CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Demetri GD et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302CrossRefGoogle Scholar
  98. 98.
    Reichardt P et al (2012) Phase III study of nilotinib versus best supportive care with or without a TKI in patients with gastrointestinal stromal tumors resistant to or intolerant of imatinib and sunitinib. Ann Oncol 23(7):1680–1687CrossRefGoogle Scholar
  99. 99.
    Campbell NP, Wroblewski K, Maki RG, et al (2011) Final results of a University of Chicago phase II consortium trial of sorafenib (SOR) in patients (pts) with imatinib (IM)- and sunitinib (SU)-resistant (RES) gastrointestinal stromal tumors (GIST) (abstract). ASCO GI cancers symposium, San Francisco, CA, 20–22 JanuaryGoogle Scholar
  100. 100.
    Montemurro M et al (2013) Sorafenib as third- or fourth-line treatment of advanced gastrointestinal stromal tumour and pretreatment including both imatinib and sunitinib, and nilotinib: a retrospective analysis. Eur J Cancer 49(5):1027–1031CrossRefGoogle Scholar
  101. 101.
    Dewaele B et al (2008) Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clin Cancer Res 14(18):5749–5758CrossRefGoogle Scholar
  102. 102.
    Kang YK et al (2013) Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol 14(12):1175–1182CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Italiano A et al (2012) Patterns of care, prognosis, and survival in patients with metastatic gastrointestinal stromal tumors (GIST) refractory to first-line imatinib and second-line sunitinib. Ann Surg Oncol 19(5):1551–1559CrossRefGoogle Scholar
  104. 104.
    Yeh CN et al (2010) Surgical management in metastatic gastrointestinal stromal tumor (GIST) patients after imatinib mesylate treatment. J Surg Oncol 102(6):599–603CrossRefGoogle Scholar
  105. 105.
    Mussi C et al (2010) Post-imatinib surgery in advanced/metastatic GIST: is it worthwhile in all patients? Ann Oncol 21(2):403–408CrossRefGoogle Scholar
  106. 106.
    Al-Batran SE et al (2007) Focal progression in patients with gastrointestinal stromal tumors after initial response to imatinib mesylate: a three-center-based study of 38 patients. Gastric Cancer 10(3):145–152CrossRefGoogle Scholar
  107. 107.
    Kobayashi K et al (2006) Hepatic artery chemoembolization for 110 gastrointestinal stromal tumors: response, survival, and prognostic factors. Cancer 107(12):2833–2841CrossRefGoogle Scholar
  108. 108.
    Pawlik TM et al (2006) Results of a single-center experience with resection and ablation for sarcoma metastatic to the liver. Arch Surg 141(6):537–543. discussion 543-4CrossRefGoogle Scholar
  109. 109.
    Raut CP et al (2006) Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J Clin Oncol 24(15):2325–2331CrossRefGoogle Scholar
  110. 110.
    DeMatteo RP et al (2007) Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg 245(3):347–352CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Knowlton CA, Brady LW, Heintzelman RC (2011) Radiotherapy in the treatment of gastrointestinal stromal tumor. Rare Tumors 3(4):e35CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Cuaron JJ et al (2013) External beam radiation therapy for locally advanced and metastatic gastrointestinal stromal tumors. Radiat Oncol 8(1):274CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Choi H et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25(13):1753–1759CrossRefGoogle Scholar
  114. 114.
    Benjamin RS et al (2007) We should desist using RECIST, at least in GIST. J Clin Oncol 25(13):1760–1764CrossRefGoogle Scholar
  115. 115.
    Kamiyama Y et al (2005) 18F-fluorodeoxyglucose positron emission tomography: useful technique for predicting malignant potential of gastrointestinal stromal tumors. World J Surg 29(11):1429–1435CrossRefGoogle Scholar
  116. 116.
    Gayed I et al (2004) The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 45(1):17–21PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Attila Kollár
    • 1
  • Pedro Nazareth AguiarJr.
    • 2
  • Nora Manoukian Forones
    • 3
  • Ramon Andrade De Mello
    • 4
    • 5
    Email author
  1. 1.Department of Medical OncologyInselspital, University of BernBernSwitzerland
  2. 2.Faculdade de Medicina do ABCSanto AndréBrazil
  3. 3.Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP)São PauloBrazil
  4. 4.Division of Medical OncologyFederal University of São Paulo (UNIFESP) & Hospital Israelita Albert EinsteinSão PauloBrazil
  5. 5.Department of Biomedical Sciences and MedicineUniversity of AlgarveFaroPortugal

Personalised recommendations