WIMP Models

  • Martin Bauer
  • Tilman Plehn
Part of the Lecture Notes in Physics book series (LNP, volume 959)


If we want to approach the problem of dark matter from a particle physics perspective, we need to make assumptions about the quantum numbers of the weakly interacting state which forms dark matter. During most of these lecture notes we assume that this new particle has a mass in the GeV to TeV range, and that its density is thermally produced during the cooling of the Universe. Moreover, we assume that the entire dark matter density of the Universe is due to one stable particle.


  1. 1.
    Plehn, T.: Lectures on LHC Physics. Lect. Notes Phys. 886 (2015). arXiv:0910.4182 [hep-ph].
  2. 2.
    Djouadi, A., Lebedev, O., Mambrini, Y., Quevillon, J.: Implications of LHC searches for Higgs–portal dark matter. Phys. Lett. B 709, 65 (2014). arXiv:1112.3299 [hep-ph]CrossRefADSGoogle Scholar
  3. 3.
    Bramante, J., Desai, N., Fox, P., Martin, A., Ostdiek, B., Plehn, T.: Towards the final word on neutralino dark matter. Phys. Rev. D 93(6), 063525 (2016). arXiv:1510.03460 [hep-ph]
  4. 4.
    Bramante, J., Fox, P.J., Martin, A., Ostdiek, B., Plehn, T., Schell, T., Takeuchi, M.: Relic neutralino surface at a 100 TeV collider. Phys. Rev. D 91, 054015 (2015). arXiv:1412.4789 [hep-ph]
  5. 5.
    Goodman, J., Ibe, M., Rajaraman, A., Shepherd, W., Tait, T.M.P., Yu, H.B.: Constraints on light majorana dark matter from colliders. Phys. Lett. B 695, 185 (2011). arXiv:1005.1286 [hep-ph]CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Bauer
    • 1
  • Tilman Plehn
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations