Advertisement

Microorganisms in Fermentation

  • Sudhanshu S. Behera
  • Ramesh C. Ray
  • Urmimala Das
  • Sandeep K. Panda
  • P. Saranraj
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Microorganisms [bacteria, fungi (yeasts and mold)] have been adopted successfully in a wide range of industries, from food and beverage processing industries to pharmaceutical operations. Additionally, microorganisms offer tremendous unexploited potential for value- added products such as amino acids, nucleotides and nucleosides, vitamins, organic acids, alcohols, exopolysaccharides, antibiotics, antitumor agents, etc., through various fermentation processes and parameters. This chapter reviews the involvement of various groups of microorganisms in fermentation. The measurement of microbial biomass, growth and kinetics, and factors affecting fermentation processes are also explained. The roles of microorganisms (bacteria and yeasts) involved in fermentation processes [solid-state fermentation (SSF) and submerged fermentation (SmF)] mostly related in processing industries are discussed.

Keywords

Microorganisms Eukaryotes Prokaryotes Submerged fermentation Solid-state fermentation Growth kinetics Microbial metabolites 

References

  1. 1.
    Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol. 2016;52:189–96.CrossRefGoogle Scholar
  2. 2.
    Anastassiadis S, Aivasidis A, Wandrey C. Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biotechnol. 2012;60:81–7.Google Scholar
  3. 3.
    Asahi S, Izawa M, Doi M. Effects of homoserine dehydrogenase deficiency on production of cytidine by mutants of Bacillus subtilis. Biosci Biotech Biochem. 2016;60:353–4.CrossRefGoogle Scholar
  4. 4.
    Babu KR, Satyanarayana T. Production of bacterial enzymes by solid state fermentation. J Sci Ind Res. 1996;55:464–7.Google Scholar
  5. 5.
    Barragán LP, Figueroa JJB, Durán LR, González CA, Hennigs C. Fermentative production methods. In: Biotransformation of agricultural waste and by-products. Netherlands: Elsevier; 2016. p. 189–217.CrossRefGoogle Scholar
  6. 6.
    Behera SS, Ray RC. Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol. 2016;86:656–69.CrossRefGoogle Scholar
  7. 7.
    Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. BioMed Res Int. 2018;2018:9361614.  https://doi.org/10.1155/2018/9361614.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bohmer N, Lutz-Wahl S, Fischer L. Recombinant production of hyperthermostable CelB from Pyrococcus furiosus in Lactobacillus sp. Appl Microbiol Biotechnol. 2012;96:903–12.CrossRefGoogle Scholar
  9. 9.
    Burkovski A, Kramer R. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol. 2002;58:265–74.CrossRefGoogle Scholar
  10. 10.
    Demain AL. Fungal secondary metabolism: regulation and functions. In: Sutton B, editor. A century of mycology. Cambridge, UK: Cambridge University Press; 2016. p. 233–54.Google Scholar
  11. 11.
    Demain AL, Fang A. Emerging concepts of secondary metabolism in actinomycetes. Actinomyceto. 2015;9:98–117.CrossRefGoogle Scholar
  12. 12.
    Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol. 2002;60:233–42.CrossRefGoogle Scholar
  13. 13.
    Desgranges C, Vergoignan C, Georges M, Durand A. Biomass estimation in solid state fermentation I. Manual biochemical methods. Appl Microbiol Biotechnol. 1991;35(2):200–5.Google Scholar
  14. 14.
    Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y, Beppu T. Cloning of the membrane bound Aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl Environ Microbiol. 2009;55:171–6.Google Scholar
  15. 15.
    Gest H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes Rec R Soc Lond. 2004;58(2):187–201.CrossRefGoogle Scholar
  16. 16.
    Grunert O, Reheul D, Van Labeke MC, Perneel M, Hernandez-Sanabria E, Vlaeminck SE, Boon N. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. MicrobBiotechnol. 2016;9:389–99.Google Scholar
  17. 17.
    Harmsen HJM, Kubicek–Pranz EM, Rohr M, Visser J, Kubicek CP. Regulation of phosphofructokinase from the citric acid accumulating fungus Aspergillus niger. Appl Microbiol Biotechnol. 2012;37:784–8.Google Scholar
  18. 18.
    Holzapfel W. Use of starter cultures in fermentation on a household scale. Food Control. 1997;8:241–58.CrossRefGoogle Scholar
  19. 19.
    Ingram LO, Conway E, Clark DP, Sewell GW, Preston JF. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 2017;53:2420–5.Google Scholar
  20. 20.
    Jernejc K, Cimerma A, Perdih A. Comparison of different methods for protein determination in Aspergillus niger mycelium. Appl Microbiol Biotechnol. 1986;23:445–8.CrossRefGoogle Scholar
  21. 21.
    Jiang SJ, Yang YY, Wang HQ. Optimization of clavulanic acid fermentation. Chi J Antibiot. 2004;6:335–7.Google Scholar
  22. 22.
    Joutsjoki V, Luoma S, Tamminen M, Kilpi M, Johansen E, Palva A. Recombinant Lactococcus starters as a potential source of additional peptidolytic activity in cheese ripening. J Appl Microbiol. 2002;92:1159–66.CrossRefGoogle Scholar
  23. 23.
    Kar S, Ray RC. Partial characterization and optimization of extracellular thermostable Ca2+ inhibited α-- amylase production by Streptomyces erumpens MTCC 7317. J Sci Ind Res India. 2008;67:58–64.Google Scholar
  24. 24.
    Kar S, Ray RC. Optimization of thermostable α- amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using cassava fibrous residue. Braz Arch Biol Technol. 2010;53:301–9.CrossRefGoogle Scholar
  25. 25.
    Kar S, Ray RC. Purification, characterization and application of thermostable exo-polygalacturonase from Streptomyces erumpens MTCC 7317. J Food Biochem. 2011;35:133–42.CrossRefGoogle Scholar
  26. 26.
    Kar S, Ray RC, Mohapatra UB. Alpha-amylase production by Streptomyces erumpens in solid state fermentation using response surface methodology. Polish J Microbiol. 2008;57:289–96.Google Scholar
  27. 27.
    Kubicek CP, Rohr M. Citric acid fermentation. CRC Crit Rev Biotechnol. 2016;3:331–73.CrossRefGoogle Scholar
  28. 28.
    Lee JK, Song JY, Kim SY. Controlling substrate concentration in fedbatch Candida magnoliae culture increases mannitol production. Biotechnol Prog. 2013;19:768–75.CrossRefGoogle Scholar
  29. 29.
    Li Y, Chen J, Lun SY, Rui XS. Efficient pyruvate production by a multi-vitamin. Int J Sci Tech. 2011;12:229–35.Google Scholar
  30. 30.
    Liu S. Bioprocess engineering: kinetics, sustainability, and reactor design. San Diego: Elsevier; 2016.Google Scholar
  31. 31.
    Masuda M, Takahashi K, Sakurai N, Yanagiya K, Komatsubara S, Tosa T. Further improvement of Biotin production by a recombinant strain of Serratia marcescens. Process Biochem. 2015;30:553–62.Google Scholar
  32. 32.
    Mienda BS, Idi A, Umar A. Microbiological features of solid state fermentation and its applications-An overview. Res Biotechnol. 2011;2:465–89.Google Scholar
  33. 33.
    Miyagawa K, Kimura H, Nakahama K, Kikuchi M, Doi M, Akiyama S, Nakao Y. Cloning of the Bacillus subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Biotechnol. 2016;4:225–8.Google Scholar
  34. 34.
    Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3:371–94.CrossRefGoogle Scholar
  35. 35.
    Nakayama K, Suzuki T, Sato Z, Kinoshita S. Production of nucleic acid - related substances by fermentative processes. J Gen Appl Microbiol. 2014;10:133–42.CrossRefGoogle Scholar
  36. 36.
    Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63:174–229.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Omura S, Crump A. The life and times of Ivermectin - A success story. Nat Rev Microbiol. 2014;2:984–9.CrossRefGoogle Scholar
  38. 38.
    Petkovic H, Cullum J, Hranueli D, Hunter IS, Peric Concha N, Pigac J, Thamchaipenet A, Vujaklija D, Long PF. Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev. 2006;70:704–28.CrossRefGoogle Scholar
  39. 39.
    Prajapati JB, Nair BM. The history of fermented foods. In: Farnworth ER, editor. Fermented functional foods. Boca Raton, New York, London, Washington DC: CRC Press; 2003. p. 1–25.Google Scholar
  40. 40.
    Rao DG. Introduction to biochemical engineering. New Delhi: Tata McGraw-Hill Education; 2010.Google Scholar
  41. 41.
    Ray RC, Joshi VK. Fermented foods;: past, present and future scenario. In: Ray RC, Montet D, editors. Microorganisms and fermentation of traditional foods. Boca Raton, Florida: CRC Press; 2014. p. 1–36.CrossRefGoogle Scholar
  42. 42.
    Robitaille G, Tremblay A, Moineau S, St-Gelais D, Vadeboncoeur C, Britten M. Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. J Dairy Sci. 2009;92:477–82.CrossRefGoogle Scholar
  43. 43.
    Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K. Cloning of genes coding for L - sorbose and L - sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L - Ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol. 2017;63:454–60.Google Scholar
  44. 44.
    Santer M. Joseph Lister: first use of a bacterium as a ‘model organism’ to illustrate the cause of infectious disease of humans. Notes Rec R Soc Lond. 2010;64:59–65.CrossRefGoogle Scholar
  45. 45.
    Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 2008;26(2):100–8.CrossRefGoogle Scholar
  46. 46.
    Sengun IY, Karabiyikli S. Importance of acetic acid bacteria in food industry. Food Control. 2011;22:647–56.CrossRefGoogle Scholar
  47. 47.
    Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anollés G. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct. 2011;6:50–5.CrossRefGoogle Scholar
  48. 48.
    Shuler ML, Kargi F. Bioprocess engineering: basic concepts. 2nd ed. Upper SaddleRiver: Prentice Hall; 2002.Google Scholar
  49. 49.
    Spalla C, Grein A, Garofano L, Ferni G. Microbial production of Vitamin B12. In: Vandamme EJ, editor. Biotechnology of vitamins, pigments and growth factors. New York: Elsevier Appl. Sci; 2009. p. 257–84.Google Scholar
  50. 50.
    Stabb EV, Jacobson LM, Handelsman J. Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol. 2014;60:4404–12.Google Scholar
  51. 51.
    Stahmann KP. Vitamins. In: Osiewacz HD, editor. The Mycota X. Industrial applications. Berlin: Springer; 2002. p. 231–46.CrossRefGoogle Scholar
  52. 52.
    Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology. Netherlands: Elsevier; 2013.Google Scholar
  53. 53.
    Strobel GA, Hess WM, Ford E, Sidhu RS, Yang X. Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol. 2016;17:417–23.Google Scholar
  54. 54.
    Taherzadeh MJ, Adler L, Liden G. Strategies for enhancing fermentative production of Glycerol - A review. Enzyme Microb Technol. 2012;31:53–66.CrossRefGoogle Scholar
  55. 55.
    Terebiznik MR, Pilosof AMR. Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol Tech. 1999;13(3):215–9.CrossRefGoogle Scholar
  56. 56.
    Thakur SA, Nemade SN, Sharanappa A. Solid state fermentation of overheated soybean meal (Waste) for production of Protease using Aspergillusoryzae. Int J Res Sci Eng Tech. 2015;50:228–35.Google Scholar
  57. 57.
    Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J. 2013;81:146–61.CrossRefGoogle Scholar
  58. 58.
    Vogel RF, Hammes WP, Habermeyer M, Engel KH, Knorr D, Eisenbrand G. Microbial food cultures–opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol Nutr Food Res. 2011;55:654–62.CrossRefGoogle Scholar
  59. 59.
    Waksman SA, Woodruff HB. Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol. 1941;42:231–49.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang ZX, Zhuge J, Fang H, Prior BA. Glycerol production by microbial fermentation: a review. Biotechnol Adv. 2011;19:201–23.CrossRefGoogle Scholar
  61. 61.
    Willke T, Verlop KD. Biotechnological production of Itaconic acid. Appl Microbiol Biotechnol. 2011;56:289–95.CrossRefGoogle Scholar
  62. 62.
    Xiao JZ, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T, Iwatsuki K, Kitaoka M. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in Bifidobacteria strain. Appl Environ Microbiol. 2010;76:54–9.CrossRefGoogle Scholar
  63. 63.
    Zakaria Z, Chong SF, Zahari AR, Fauzi NA, Shayuti SAM. Growth kinetic of fresh and freeze-dried Pleurotus sajor-caju (Oyster Mushroom) mycelium for preservation study. Key Eng Mat. 2014;594:196–202.Google Scholar
  64. 64.
    Zeikus JG, Jain MK, Elankovan P. Biotechnology of Succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol. 2009;51:545–52.CrossRefGoogle Scholar
  65. 65.
    Znad H, Markos J, Bales V. Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions. Process Biochem. 2014;39:1341–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sudhanshu S. Behera
    • 1
  • Ramesh C. Ray
    • 2
  • Urmimala Das
    • 2
  • Sandeep K. Panda
    • 3
  • P. Saranraj
    • 4
  1. 1.Department of Fisheries and Animal Resource DevelopmentGovernment of OdishaBhubaneswarIndia
  2. 2.Centre for Food Biology and Environment StudiesBhubaneswarIndia
  3. 3.School of Biotechnology, KIIT UniversityBhubaneswarIndia
  4. 4.Department of MicrobiologySacred Heart College (Autonomous)TirupatturIndia

Personalised recommendations