Advertisement

In-situ Visualization of the Propagation of the Electric Potential in a Human Atrial Model Using GPU

  • John H. OsorioEmail author
  • Andres P. Castano
  • Oscar Henao
  • Juan Hincapie
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 979)

Abstract

Computational heart-tissue models envelope the solution of non-linear partial and ordinary differential equations. After applying certain discretization methods (finite difference, finite elements) to them for its solution, result in a set of operations between matrices in the order of millions. The outcome of this are programs with high execution times.

The current work simulates a human atrium tissue using the Courtemanche electrical model [1]. The cell pairing is made using the finite difference method and its computational implementation was made using the Armadillo C++ library [2], for the CPU version and the acceleration was made through the CUDA library [3] on a nVidia Tesla K40 card.

Additionally the visualization process was made using Paraview-Catalyst [4], two computing nodes permits that the execution process of the numerical method runs on a node while the other node makes the visualization simultaneously.

A novel process to make atrium human visualizations was implemented, a 200X acceleration was achieved using CUDA and Arrayfire [5].

Keywords

CUDA Massively parallel computing Paraview In-situ visualization Courtemanche atrial model 

Notes

Acknowledgements

The authors thank the nVidia company [32] for supporting the GPU Education Center of the Universidad Tecnologica de Pereira which is managed by the research group Sirius, part of the Systems Engineering program [2].

References

  1. 1.
    Courtemanche, M.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. The American Physiological Society (1998)Google Scholar
  2. 2.
    Sanderson, C., Curtin, R.: Armadillo: C++ linear algebra library (2010). https://www.nvidia.com
  3. 3.
  4. 4.
    kitware. Paraview catalyst, August 2016Google Scholar
  5. 5.
  6. 6.
    Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theoret. Biol. 253(3), 544–560 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rush, S., Larsen, H.: A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. BME 25(4), 389–392 (1978)CrossRefGoogle Scholar
  8. 8.
    Sundnes, J., Artebrant, R., Skavhaug, O., Tveito, A.: A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56(10), 2546–2548 (2009)CrossRefGoogle Scholar
  9. 9.
    Perego, M., Veneziani, A.: An efficient generalization of the rush-larsen method for solving electro-physiology membrane equations. Electron. Trans. Numer. Anal. 35, 234–256 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    de Barros, B.G., Oliveira, R.S., Meira, W., Lobosco, M., dos Santos, R.W.: Simulations of complex and microscopic models of cardiac electrophysiology powered by Multi-GPU platforms. Comput. Math. Methods Med. 2012, 1–13 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nimmagadda, V.K., Akoglu, A., Hariri, S., Moukabary, T.: Cardiac simulation on multi-GPU platform. J. Supercomput. 59(3), 1360–1378 (2012)CrossRefGoogle Scholar
  12. 12.
    Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol., 1573–1589 (2004)Google Scholar
  13. 13.
    Marcotte, C.D., Grigoriev, R.O.: Implementation of PDE models of cardiac dynamics on GPUs using OpenCL. J. Comput. Phys. (2013)Google Scholar
  14. 14.
    Garcia-Molla, V.M., et al.: Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Comput. Biol. Med. 44, 15–26 (2014)CrossRefGoogle Scholar
  15. 15.
    Xia, Y., Wang, K., Zhang, H.: Parallel optimization of 3D Cardiac Electrophysiological Model using GPU. Comput. Math. Methods Med. 1–10, 2015 (2015)zbMATHGoogle Scholar
  16. 16.
    Zhao, C.: Computer simulation implementations and optimization of the right atrium of the heart based on GPU, vol. 5 (2015)Google Scholar
  17. 17.
    Reumann, M., et al.: Towards run time visualization in cardiac modeling. In: Dössel, O., Schlegel, W.C. (eds.) Towards Run Time Visualization in Cardiac Modeling, vol. 25/4, pp. 999–1002. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03882-2_266CrossRefGoogle Scholar
  18. 18.
    Mazzeo, M.D., Manos, S., Coveney, P.V.: In situ ray tracing and computational steering for interactive blood flow simulation. Comput. Phys. Commun. 181(2), 355–370 (2010)CrossRefGoogle Scholar
  19. 19.
    Kalpana, K.: Parallel visualization of a 3D heart model in an heterogeneous computing environment. Ph.D. thesis, Malaya University (2010)Google Scholar
  20. 20.
    Rivi, M., Calori, L., Muscianisi, G., Slavnic, V.: In-situ visualization: state-of-the-art and some use cases. PRACE White Paper, pp. 1–18 (2012)Google Scholar
  21. 21.
    Moreland, K., Larsen, M., Childs, H.: Visualization for exascale: portable performance is critical. Supercomput. Front. Innovations 2(3), 67–75 (2015)Google Scholar
  22. 22.
    Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016)CrossRefGoogle Scholar
  23. 23.
    Kitware: Paraview catalystGoogle Scholar
  24. 24.
    Kitware: ParaviewGoogle Scholar
  25. 25.
    Organización Mundial de la Salud. Cardiovascular diseases, September (2016)Google Scholar
  26. 26.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)CrossRefGoogle Scholar
  27. 27.
    nVidia: About cuda, November 2015Google Scholar
  28. 28.
    Yalamanchili, P., et al.: ArrayFire - a high performance software library for parallel computing with an easy-to-use API (2015)Google Scholar
  29. 29.
    Osorio, J.: Implementación modelo eléctrico celular cardíacoGoogle Scholar
  30. 30.
    kitware: Visualization toolkit (vtk), June 2016Google Scholar
  31. 31.
    John Roy, M., Saurabh, K.:. Sinus Node and Atrial Arrhythmias. Circulation - American Heart Association, pp. 10 (2016)Google Scholar
  32. 32.
    nvidia: nvidia corporationGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • John H. Osorio
    • 1
    Email author
  • Andres P. Castano
    • 3
  • Oscar Henao
    • 2
  • Juan Hincapie
    • 1
    • 2
  1. 1.Universidad Tecnológica de PereiraPereiraColombia
  2. 2.Universidad Tecnológica de PereiraPereiraColombia
  3. 3.Universidad de CaldasManizalesColombia

Personalised recommendations