Bi-objective Analysis of an Adaptive Secure Data Storage in a Multi-cloud

  • Esteban C. Lopez-Falcon
  • Vanessa Miranda-López
  • Andrei TchernykhEmail author
  • Mikhail Babenko
  • Arutyun Avetisyan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 979)


Security issues related to cloud computing as well as all solutions proposed in the literature are one of the high topics for research. However, there are many unsolved problems regarded to cloud storage. In this paper, we focused on an adaptive model of data storage based on Secret Sharing Schemes (SSS) and Residue Number System (RNS). We proposed five strategies to minimize information loss and time to data upload and download into the cloud. We evaluate these strategies on seven Cloud Storage Providers (CSPs). We study a correlation of system settings with the probability of information loss, data redundancy, speed of access to CSPs, and encoding/decoding speeds We demonstrate that strategies that consider CSPs with the best upload access speeds and then, after storing, migrate to the CSPs with the least probability of information loss or best download speeds show better performance behavior.


Data loss Storage Residue number system Security 



The work is partially supported by Russian Foundation for Basic Research (RFBR) 18-07-01224 and State task No. 2.6035.2017.


  1. 1.
    Chen, D., Zhao, H.: Data security and privacy protection issues in cloud computing. In: 2012 International Conference on Computer Science and Electronics Engineering (ICCSEE), vol. 1, pp. 647–651. IEEE (2012).
  2. 2.
    Krutz, R.L., Vines, R.D.: Cloud Security: A Comprehensive Guide to Secure Cloud Computing, 1st edn. Wiley, Hoboken (2010)Google Scholar
  3. 3.
    Gagnaire, M., et al.: Downtime statistics of current cloud solutions. International Working Group on Cloud Computing Resiliency, Technical report (2012)Google Scholar
  4. 4.
    IWGCR International Working Group on Cloud Computing Resiliency Homepage. Accessed 1 Sept 2018
  5. 5.
    SecureList Homepage. Accessed 3 Nov 2018
  6. 6.
    CloudHarmony Homepage. Accessed 3 Nov 2018
  7. 7.
    Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Network coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–4551 (2010). Scholar
  8. 8.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006). Scholar
  9. 9.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009). Scholar
  10. 10.
    Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43. ACM, New York (2003).
  11. 11.
    Ganesan, A., Alagappan, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Redundancy does not imply fault tolerance: analysis of distributed storage reactions to single errors and corruptions. In: Proceedings of the 15th Usenix Conference on File and Storage Technologies, pp. 149–165. USENIX Association, Berkeley (2017)Google Scholar
  12. 12.
    Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: dependable and secure storage in a cloud-of-clouds. ACM Trans. Storage 9(4), 12 (2013). Scholar
  13. 13.
    Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: a case for cloud storage diversity. In: Proceedings of the 1st ACM Symposium on Cloud computing, pp. 229–240. ACM (2010).
  14. 14.
    Chervyakov, N., Babenko, M., Tchernykh, A., Kucherov, N., Miranda-López, V., Cortés-Mendoza, J.M.: AR-RRNS: configurable, scalable and reliable systems for Internet of Things to ensure security. Future Gener. Comput. Syst. 92, 1080–1092 (2019). Scholar
  15. 15.
    Marium, S., Nazir, Q., Shaikh, A.A., Ahthasham, S., Mehmood, M.A.: Implementation of EAP with RSA for enhancing the security of cloud computing. Int. J. Basic Appl. Sci. 1(3), 177–183 (2012)Google Scholar
  16. 16.
    Rathanam, G.J., Sumalatha, M.R.: Dynamic secure storage system in cloud services. In: 2014 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1–5. IEEE (2014).
  17. 17.
    Babitha, M.P., Babu, K.R.R.: Secure cloud storage using AES encryption. In: International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, pp. 859–864 (2016)Google Scholar
  18. 18.
    Tchernykh, A., et al.: Performance evaluation of secret sharing schemes with data recovery in secured and reliable heterogeneous multi-cloud storage. Cluster Comput., 1–13 (2019).
  19. 19.
    Miranda-López, V., et al.: Experimental analysis of secret sharing schemes for cloud storage based on RNS. In: Mocskos, E., Nesmachnow, S. (eds.) CARLA 2017. CCIS, vol. 796, pp. 370–383. Springer, Cham (2018). Scholar
  20. 20.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press (1978)Google Scholar
  21. 21.
    Gentry, C.: A fully homomorphic encryption scheme (2009)Google Scholar
  22. 22.
    Tchernykh, A., et al.: AC-RRNS: anti-collusion secured data sharing scheme for cloud storage. Int. J. Approx. Reason. 102, 60–73 (2018). Scholar
  23. 23.
    Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability, obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput. Appl. 59, 208–218 (2016). Scholar
  24. 24.
    Chang, C.H., Molahosseini, A.S., Zarandi, A.A.E., Tay, T.F.: Residue number systems: a new paradigm to datapath optimization for low-power and high-performance digital signal processing applications. IEEE Circ. Syst. Mag. 15, 26–44 (2015). Scholar
  25. 25.
    Tchernykh, A., Schwiegelsohn, U., Talbi, E., Babenko, M.: Towards understanding uncertainty in cloud computing with risks of confidentiality, integrity, and availability. J. Comput. Sci. (2016).
  26. 26.
    Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., Talbi, E.: Towards understanding uncertainty in cloud computing resource provisioning. Procedia Comput. Sci. 51, 1772–1781 (2015). Scholar
  27. 27.
    Tchernykh, A., et al.: Towards mitigating uncertainty of data security breaches and collusion in cloud computing. In: Proceedings of UCC 2017, Lyon, France, pp. 137–141. IEEE Press (2017).
  28. 28.
  29. 29.
    Drago, I., Mellia, M., Munafo, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside dropbox: understanding personal cloud storage services. In: Proceedings of the 2012 Internet Measurement Conference, pp. 481–494. ACM (2012).
  30. 30.
    OneDrive. Accessed 15 Feb 2018
  31. 31.
    GoogleDrive. Accessed 15 Feb 2018
  32. 32.
    Box. Accessed 10 Jan 2018
  33. 33.
    ShareFile. Accessed 10 Jan 2018
  34. 34.
  35. 35.
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.
  42. 42.
    Apache HttpClient.
  43. 43.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CICESE Research CenterEnsenadaMexico
  2. 2.North-Caucasus Federal UniversityStavropolRussia
  3. 3.Ivannikov Institute for System Programming of the RASMoscowRussia
  4. 4.South Ural State UniversityChelyabinskRussia

Personalised recommendations