Advertisement

On Block-Structured Integer Programming and Its Applications

  • Lin Chen
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 147)

Abstract

Integer programming in a variable dimension is a crucial research topic that has received a considerable attention in recent years. A series of fixed parameter tractable (FPT) algorithms have been developed for a variety of integer programming that has a special block structure, and such results were later applied successfully in many classical combinatorial optimization problems to derive FPT or approximation algorithms. From a theoretical point of view, it is important to understand the overall landscape, and distinguish the structures of integer programming that are tractable vs. intractable or unknown so far. From the application point of view, it is important to understand how the structure of such integer programming is related to the structure of concrete combinatorial optimization problems. The goal of this survey is to summarize recent progress in theory and application of integer programming that has a block structure and point to important open problems in this research direction.

References

  1. 1.
    Altmanová, K., Knop, D., Kouteckỳ, M.: Evaluating and tuning n-fold integer programming. arXiv preprint arXiv:1802.09007 (2018)Google Scholar
  2. 2.
    Aschenbrenner, M., Hemmecke, R.: Finiteness theorems in stochastic integer programming. Found. Comput. Math. 7(2), 183–227 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, L., Marx, D.: Covering a tree with rooted subtrees–parameterized and approximation algorithms. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2801–2820. SIAM, Philadelphia (2018)CrossRefGoogle Scholar
  4. 4.
    Chen, L., Marx, D., Ye, D., Zhang, G.: Parameterized and approximation results for scheduling with a low rank processing time matrix. In: Proceedings of the Thirty-Fourth Symposium on Theoretical Aspects of Computer Science, STACS, pp. 22:1–22:14 (2017)Google Scholar
  5. 5.
    Chen, L., Xu, L.. Shi, W.: On the graver basis of block-structured integer programming. arXiv preprint arXiv:1805.03741 (2018)Google Scholar
  6. 6.
    Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Caratheodory’s theorem. J. Comb. Theory B 40(1), 63–70 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    De Loera, J.A., Hemmecke, R., Onn, S., Rothblum, U.G., Weismantel, R.: Convex integer maximization via graver bases. J. Pure Appl. Algebra 213(8), 1569–1577 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer Science & Business Media, New York (2012)zbMATHGoogle Scholar
  9. 9.
    Eisenbrand, F., Hunkenschröder, C., Klein, K.-M.: Faster algorithms for integer programs with block structure. arXiv preprint arXiv:1802.06289 (2018)Google Scholar
  10. 10.
    Fishburn, P.C.: Condorcet social choice functions. SIAM J. Appl. Math. 33(3), 469–489 (1977)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Graver, J.E.: On the foundations of linear and integer linear programming i. Math. Program. 9(1), 207–226 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm for convex integer minimization. Math. Program. 126(1), 97–117 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hemmecke, R., Onn, S., Romanchuk, L.: N-fold integer programming in cubic time. Math. Program. 137(1–2), 325–341 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hemmecke, R., Köppe, M., Weismantel, R.: Graver basis and proximity techniques for block-structured separable convex integer minimization problems. Math. Program. 145(1–2), 1–18 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM (JACM) 34(1), 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hoşten, S., Sullivant, S.: A finiteness theorem for Markov bases of hierarchical models. J. Comb. Theory A 114(2), 311–321 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jansen, K., Klein, K.-M., Maack, M., Rau, M.: Empowering the configuration-IP-new PTAS results for scheduling with setups times. arXiv preprint arXiv:1801.06460 (2018)Google Scholar
  19. 19.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972)CrossRefGoogle Scholar
  20. 20.
    Knop, D., Kouteckỳ, M.: Scheduling meets n-fold integer programming. J. Sched. 21(5), 493–503 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Knop, D., Kouteckỳ, M., Mnich, M.: Combinatorial n-fold integer programming and applications. arXiv preprint arXiv:1705.08657 (2017)Google Scholar
  22. 22.
    Kouteckỳ, M., Levin, A., Onn, S.: A parameterized strongly polynomial algorithm for block structured integer programs. arXiv preprint arXiv:1802.05859 (2018)Google Scholar
  23. 23.
    Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Math. Program. 154(1–2), 533–562 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zurich (2010)Google Scholar
  26. 26.
    Papadimitriou, C.H.: On the complexity of integer programming. J. ACM (JACM) 28(4), 765–768 (1981)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sebö, A.: Hilbert bases, Caratheodory’s theorem and combinatorial optimization. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 431–455. University of Waterloo Press, Ontario (1990)Google Scholar
  28. 28.
    Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lin Chen
    • 1
  1. 1.Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations