Advertisement

Selective Training: A Strategy for Fast Backpropagation on Sentence Embeddings

  • Jan NeerbekEmail author
  • Peter Dolog
  • Ira Assent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11441)

Abstract

Representation or embedding based machine learning models, such as language models or convolutional neural networks have shown great potential for improved performance. However, for complex models on large datasets training time can be extensive, approaching weeks, which is often infeasible in practice. In this work, we present a method to reduce training time substantially by selecting training instances that provide relevant information for training. Selection is based on the similarity of the learned representations over input instances, thus allowing for learning a non-trivial weighting scheme from multi-dimensional representations. We demonstrate the efficiency and effectivity of our approach in several text classification tasks using recursive neural networks. Our experiments show that by removing approximately one fifth of the training data the objective function converges up to six times faster without sacrificing accuracy.

Keywords

Selective training Machine learning Neural network Recursive models 

Notes

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 732240 (Synchronicity Project). The authors would like to thank the anonymous reviewers for valuable comments and suggestions.

References

  1. 1.
    Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. JMLR 3, 1137–1155 (2003)zbMATHGoogle Scholar
  2. 2.
    Coates, A., Ng, A.Y.: Learning feature representations with K-means. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 561–580. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35289-8_30CrossRefGoogle Scholar
  3. 3.
    Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: ICML, pp. 160–167 (2008)Google Scholar
  4. 4.
    Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. JMLR 12, 2493–2537 (2011)zbMATHGoogle Scholar
  5. 5.
    Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: EMNLP, pp. 670–680 (2017)Google Scholar
  6. 6.
    Cormack, G.V., Grossman, M.R., Hedin, B., Oard, D.W.: Overview of the TREC 2010 legal track. In: TREC (2010)Google Scholar
  7. 7.
    Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21(3), 768–769 (1965)Google Scholar
  8. 8.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156 (1996)Google Scholar
  9. 9.
    Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: IEEE ICNN, pp. 347–352 (1996)Google Scholar
  10. 10.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  11. 11.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  12. 12.
    İrsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: NIPS, pp. 2096–2104 (2014)Google Scholar
  13. 13.
    Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746–1751 (2014)Google Scholar
  14. 14.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)Google Scholar
  15. 15.
    Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)Google Scholar
  16. 16.
    Kiss, T., Strunk, J.: Unsupervised multilingual sentence boundary detection. Comput. Linguist. 32(4), 485–525 (2006)CrossRefGoogle Scholar
  17. 17.
    Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: ACL, pp. 423–430 (2003)Google Scholar
  18. 18.
    Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30115-8_22CrossRefGoogle Scholar
  19. 19.
    Kotsiantis, S.B.: Bagging and boosting variants for handling classifications problems: a survey. Knowl. Eng. Rev. 29(1), 78–100 (2014)CrossRefGoogle Scholar
  20. 20.
    Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, pp. 1188–1196 (2014)Google Scholar
  21. 21.
    Lloyd, S.: Least squares quantization in PCM. IEEE TIT 28(2), 129–137 (1982)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks. In: ICLR Workshop (2016)Google Scholar
  23. 23.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)Google Scholar
  24. 24.
    Neerbek, J., Assent, I., Dolog, P.: Detecting complex sensitive information via phrase structure in recursive neural networks. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 373–385. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93040-4_30CrossRefGoogle Scholar
  25. 25.
    Olvera-López, J.A., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Kittler, J.: A review of instance selection methods. AI Rev. 34(2), 133–143 (2010)Google Scholar
  26. 26.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)Google Scholar
  27. 27.
    Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. In: EMNLP (2015)Google Scholar
  28. 28.
    Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Socher, R., Huang, E.H., Pennin, J., Manning, C.D., Ng, A.Y.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: NIPS, pp. 801–809 (2011)Google Scholar
  30. 30.
    Socher, R., Manning, C.D., Ng, A.Y.: Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: NIPS Deep Learning and Unsupervised Feature Learning Workshop, pp. 1–9 (2010)Google Scholar
  31. 31.
    Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP, pp. 1631–1642 (2013)Google Scholar
  32. 32.
    Taylor, A., Marcus, M., Santorini, B.: The penn treebank: an overview. In: Abeillé, A. (ed.) Treebanks. TLTB, pp. 5–22. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-94-010-0201-1_1CrossRefGoogle Scholar
  33. 33.
    Tomlinson, S.: Learning task experiments in the TREC 2010 legal track. In: TREC (2010)Google Scholar
  34. 34.
    Zhao, Z., Liu, T., Li, B., Du, X.: Cluster-driven model for improved word and text embedding. In: ECAI, pp. 99–106 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science, DIGIT CenterAarhus UniversityAarhusDenmark
  2. 2.Alexandra InstituteAarhusDenmark
  3. 3.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations