Advertisement

Discovering Senile Dementia from Brain MRI Using Ra-DenseNet

  • Xiaobo Zhang
  • Yan YangEmail author
  • Tianrui Li
  • Hao Wang
  • Ziqing He
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11441)

Abstract

With the rapid development of medical industry, there is a growing demand for disease diagnosis using machine learning technology. The recent success of deep learning brings it to a new height. This paper focuses on application of deep learning to discover senile dementia from brain magnetic resonance imaging (MRI) data. In this work, we propose a novel deep learning model based on Dense convolutional Network (DenseNet), denoted as ResNeXt Adam DenseNet (Ra-DenseNet), where each block of DenseNet is modified using ResNeXt and the adapter of DenseNet is optimized by Adam algorithm. It compresses the number of the layers in DenseNet from 121 to 40 by exploiting the key characters of ResNeXt, which reduces running complexity and inherits the advantages of Group Convolution technology. Experimental results on a real-world MRI data set show that our Ra-DenseNet achieves a classification accuracy with 97.1\(\%\) and outperforms the existing state-of-the-art baselines (i.e., LeNet, AlexNet, VGGNet, ResNet and DenseNet) dramatically.

Keywords

Senile dementia Deep learning Magnetic resonance imaging (MRI) ResNeXt Adam DenseNet (Ra-DenseNet) 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61572407) and the Seeding Project of Scientific and Technological Innovation in Sichuan Province of China (No. 2018102).

References

  1. 1.
    Fang, C., Li, C., Cabrerizo, M., et al.: A Gaussian discriminant analysis-based generative learning algorithm for the early diagnosis of mild cognitive impairment in Alzheimer’s disease. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 538–542 (2017)Google Scholar
  2. 2.
    Gray, K.R., Aljabar, P., Heckemann, R.A., et al.: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage 65, 167–175 (2013)CrossRefGoogle Scholar
  3. 3.
    Harman, D.: Alzheimer’s disease pathogenesis. Ann. N. Y. Acad. Sci. 1067, 454–560 (2007)CrossRefGoogle Scholar
  4. 4.
    He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  5. 5.
    Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 4700–4708 (2017)Google Scholar
  6. 6.
    Hon, M., Khan, N.M: Towards Alzheimer’s disease classification through transfer learning. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 1166–1169 (2017)Google Scholar
  7. 7.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)Google Scholar
  8. 8.
    Kong, W., Mou, X., Hu, X.: Exploring matrix factorization techniques for significant genes identification of Alzheimers disease microarray gene expression data. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, vol. 12, no. 5, p. S7 (2011)Google Scholar
  9. 9.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105 (2012)Google Scholar
  10. 10.
    LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  11. 11.
    Liu, M., Zhang, D., Shen, D.: Ensemble sparse classification of Alzheimer’s disease. Neuroimage 60(2), 1106–1116 (2012)CrossRefGoogle Scholar
  12. 12.
    Liu, Y.: Magnetic resonance imaging. In: Current Laboratory Methods in Neuroscience Research, pp. 249–270 (2013)Google Scholar
  13. 13.
    Liu, F., Wee, C.Y., Chen, H., et al.: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014)CrossRefGoogle Scholar
  14. 14.
    Liu, Q., Chen, C., Gao, A., et al.: VariFunNet, an integrated multiscale modeling framework to study the effects of rare non-coding variants in genome-wide association studies: applied to Alzheimer’s disease. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 2177–2182 (2017)Google Scholar
  15. 15.
    Luo, Y.M., Weng, H., Zhang, L., et al.: Salt restriction: recognition and treatment of chronic kidney disease related edema in ancient literature mining. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 1369–1375 (2017)Google Scholar
  16. 16.
    Marcus, D., Wang, T., Parker, J., et al.: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adult. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)CrossRefGoogle Scholar
  17. 17.
    Milletari, F., Ahmadi, S.-A., Kroll, C., et al.: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image Underst. 164, 92–102 (2017)CrossRefGoogle Scholar
  18. 18.
    Moradi, E., Pepe, A., Gaser, C., et al.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015)CrossRefGoogle Scholar
  19. 19.
    Nichols, T.E., Das, S., Eickhoff, S.B., et al.: Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20(3), 299–303 (2017)CrossRefGoogle Scholar
  20. 20.
    Panda, A.K., Kumar, M., Chaudhary, M.K., et al.: Brain tumour extraction from MRI images using k-means clustering. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 4(4), 356–359 (2016)Google Scholar
  21. 21.
    Peng, Y., Tang, C., Chen, G., et al.: Multi-label learning by exploiting label correlations for TCM diagnosing Parkinson’s disease. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 590–594 (2017)Google Scholar
  22. 22.
    Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sorg, C., Riedl, V., Muhlau, M., et al.: Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. 104(47), 18760–18765 (2007)CrossRefGoogle Scholar
  25. 25.
    Sutskever, I., Martens, J., Dahl, G., et al.: On the importance of initialization and momentum in deep learning. In: Proceedings of the International Conference on Machine Learning, pp. 1139–1147 (2013)Google Scholar
  26. 26.
    Tahmasian, M., Shao, J., Meng, C., et al.: Based on the network degeneration hypothesis: separating individual patients with different neurodegenerative syndromes in a preliminary hybrid PET/MR study. J. Nucl. Med. 57, 410–415 (2016)CrossRefGoogle Scholar
  27. 27.
    Tang, X., Hu, X., Yang, X., et al.: A algorithm for identifying disease genes by incorporating the subcellular localization information into the protein-protein interaction networks. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 308–311 (2016)Google Scholar
  28. 28.
    Tong, T., Gray, K., Gao, Q., et al.: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recogn. 63, 171–181 (2017)CrossRefGoogle Scholar
  29. 29.
    Xie, S., Girshick, R., Doll\(\acute{a}\)r, P., et al.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995 (2017)Google Scholar
  30. 30.
    Young, J., Modat, M., Cardoso, M.J., et al.: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. NeuroImage: Clin. 2, 735–745 (2013)CrossRefGoogle Scholar
  31. 31.
    Zhang, D., Wang, Y., Zhou, L., et al.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)CrossRefGoogle Scholar
  32. 32.
    Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59(2), 60–67 (2012)MathSciNetGoogle Scholar
  33. 33.
    Zhang, X., Yang, Y., Wang, H., et al.: Analysis of senile dementia from the brain magnetic resonance imaging data with clustering. In: Proceedings of the 13th International FLINS Conference (FLINS 2018) and Intelligent Systems and Knowledge Engineering (ISKE 2018), pp. 1454–1461 (2018)Google Scholar
  34. 34.
    Zhu, X., Suk, H.I., Wang, L., et al.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 38, 205–214 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiaobo Zhang
    • 1
  • Yan Yang
    • 1
    Email author
  • Tianrui Li
    • 1
  • Hao Wang
    • 1
  • Ziqing He
    • 1
  1. 1.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina

Personalised recommendations