Mining Cluster Patterns in XML Corpora via Latent Topic Models of Content and Structure

  • Gianni Costa
  • Riccardo OrtaleEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11441)


We present two innovative machine-learning approaches to topic model clustering for the XML domain. The first approach consists in exploiting consolidated clustering techniques, in order to partition the input XML documents by their meaning. This is captured through a new Bayesian probabilistic topic model, whose novelty is the incorporation of Dirichlet-multinomial distributions for both content and structure. In the second approach, a novel Bayesian probabilistic generative model of XML corpora seamlessly integrates the foresaid topic model with clustering. Both are conceived as interacting latent factors, that govern the wording of the input XML documents. Experiments over real-world benchmark XML corpora reveal the overcoming effectiveness of the devised approaches in comparison to several state-of-the-art competitors.


Bayesian probabilistic XML analysis XML clustering Latent topic modeling 


  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann, Burlington (2000)Google Scholar
  2. 2.
    Aggarwal, C.C., Ta, N., Wang, J., Feng, J., Zaki, M.: XProj: a framework for projected structural clustering of XML documents. In: Proceedings of ACM KDD, pp. 46–55 (2007)Google Scholar
  3. 3.
    Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)CrossRefGoogle Scholar
  4. 4.
    Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)zbMATHGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  6. 6.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  7. 7.
    Bratko, A., Filipic̆, B.: Exploiting structural information for semi-structured document categorization. Inf. Process. Manag. 42(3), 679–694 (2006)CrossRefGoogle Scholar
  8. 8.
    Costa, G., Ortale, R.: Developments in partitioning XML documents by content and structure based on combining multiple clusterings. In: Proceedings of IEEE ICTAI, pp. 477–482 (2013)Google Scholar
  9. 9.
    Costa, G., Ortale, R.: A latent semantic approach to XML clustering by content and structure based on non-negative matrix factorization. In: Proceedings of IEEE ICMLA, pp. 179–184 (2013)Google Scholar
  10. 10.
    Costa, G., Ortale, R.: Mining clusters in XML corpora based on Bayesian generative topic modeling. In: Proceedings of IEEE ICMLA, pp. 515–520 (2015)Google Scholar
  11. 11.
    Costa, G., Ortale, R.: XML clustering by structure-constrained phrases: a fully-automatic approach using contextualized N-grams. Int. J. Artif. Intell. Tools 26(1), 1–24 (2017)CrossRefGoogle Scholar
  12. 12.
    Costa, G., Ortale, R.: Machine learning techniques for XML (co-)clustering by structure-constrained phrases. Inf. Retr. J. 21(1), 24–55 (2018)CrossRefGoogle Scholar
  13. 13.
    Denoyer, L., Gallinari, P.: Report on the XML mining track at INEX 2007. ACM SIGIR Forum 42(1), 22–28 (2008)CrossRefGoogle Scholar
  14. 14.
    Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory 49(7), 1858–1860 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hagenbuchner, M., Tsoi, A.C., Sperduti, A., Kc, M.: Efficient clustering of structured documents using graph self-organizing maps. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 207–221. Springer, Heidelberg (2008). Scholar
  16. 16.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)zbMATHGoogle Scholar
  17. 17.
    Heinrich, G.: Parameter estimation for text analysis. Technical report, University of Leipzig (2008).
  18. 18.
    Kutty, S., Nayak, R., Li, Y.: HCX: an efficient hybrid clustering approach for XML documents. In: Proceedings of ACM DocEng, pp. 94–97 (2009)Google Scholar
  19. 19.
    Kutty, S., Nayak, R., Li, Y.: XCFS: an XML documents clustering approach using both the structure and the content. In: Proceedings of ACM CIKM, pp. 1729–1732 (2009)Google Scholar
  20. 20.
    Li, S., Huang, G., Tan, R., Pan, R.: Tag-weighted dirichlet allocation. In: Proceedings of IEEE ICDM, pp. 438–447 (2013)Google Scholar
  21. 21.
    Li, S., Li, J., Pan, R.: Tag-weighted topic model for mining semi-structured documents. In: Proceedings of IJCAI, pp. 2855–2861 (2013)Google Scholar
  22. 22.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS, pp. 3111–3119 (2013)Google Scholar
  23. 23.
    Mimno, D.M., McCallum, A.: Topic models conditioned on arbitrary features with dirichlet-multinomial regression. In: Proceedings of UAI, pp. 411–418 (2008)Google Scholar
  24. 24.
    Ramage, D., Manning, C.D., Dumais, S.: Partially labeled topic models for interpretable text mining. In: Proceedings of ACM KDD, pp. 457–465 (2011)Google Scholar
  25. 25.
    Tran, T., Nayak, R., Bruza, P.: Document clustering using incremental and pairwise approaches. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 222–233. Springer, Heidelberg (2008). Scholar
  26. 26.
    Xie, P., Xing, E.P.: Integrating document clustering and topic modeling. In: Proceedings of UAI (2013)Google Scholar
  27. 27.
    Yao, J., Zerida, N.: Rare patterns to improve path-based clustering of Wikipedia articles. In: Pre-proceedings of INEX, pp. 224–231 (2007)Google Scholar
  28. 28.
    Yi, J., Sundaresan, N.: A classifier for semi-structured documents. In: Proceedings of ACM KDD, pp. 340–344 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ICAR-CNRRendeItaly

Personalised recommendations