Rodent Spinal Cord Demyelination Models

  • Kariena R. Andres
  • Johnny R. Morehouse
  • Rachel Cary
  • Christine D. Yarberry
  • Nicholas J. Kuypers
  • Scott R. WhittemoreEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Oligodendrocyte loss and subsequent demyelination is a significant component of the demyelinating diseases such as multiple sclerosis (MS) and traumatic CNS injury such as spinal cord (SCI) or traumatic brain (TBI) injury. Therefore, remyelination, either by enhancing endogenous myelination or engrafting exogenous myelinating cells, is a viable therapeutic target to restore function. To assess specific approaches to facilitate functional remyelination in vivo, appropriate injury models are needed. This chapter will discuss the strengths and weaknesses of a number of demyelinating lesions of the spinal cord and provide guidelines for choosing which model best suits which experimental condition. Step by step procedures for both creating and assessing the lesion will be provided.


Spinal cord injury Demyelination Ethidium bromide Lysolecithin Cuprizone 



Supported by RR15576/GM103507, NS054708, Norton Healthcare, Commonwealth of Kentucky Challenge for Excellence, and the Kentucky Spinal Cord and Head Injury Research Trust.

Supplementary material

Video 1

(MP4 364282 kb)


  1. 1.
    Woodruff RH, Franklin RJ. Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia. 1999;25:216–28.CrossRefGoogle Scholar
  2. 2.
    Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 2001;11:107–16.CrossRefGoogle Scholar
  3. 3.
    Herder V, Hansmann F, Stangel M, Skripuletz T, Baumgartner W, Beineke A. Lack of cuprizone-induced demyelination in the murine spinal cord despite oligodendroglial alterations substantiates the concept of site-specific susceptibilities of the central nervous system. Neuropathol Appl Neurobiol. 2011;37:676–84.CrossRefGoogle Scholar
  4. 4.
    Blakemore WF. The response of oligodendrocytes to chemical injury. Acta Neurol Scand Suppl. 1984;100:33–8.PubMedGoogle Scholar
  5. 5.
    Blakemore WF. Ethidium bromide induced demyelination in the spinal cord of the cat. Neuropathol Appl Neurobiol. 1982;8:365–75.CrossRefGoogle Scholar
  6. 6.
    Desjardins P, Frost E, Morais R. Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol Cell Biol. 1985;5:1163–9.CrossRefGoogle Scholar
  7. 7.
    Hayakawa T, Noda M, Yasuda K, Yorifuji H, Taniguchi S, Miwa I, Sakura H, Terauchi Y, Hayashi J, Sharp GW, Kanazawa Y, Akanuma Y, Yazaki Y, Kadowaki T. Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. J Biol Chem. 1998;273:20300–7.CrossRefGoogle Scholar
  8. 8.
    Hayashi J, Tanaka M, Sato W, Ozawa T, Yonekawa H, Kagawa Y, Ohta S. Effects of ethidium bromide treatment of mouse cells on expression and assembly of nuclear-coded subunits of complexes involved in the oxidative phosphorylation. Biochem Biophys Res Commun. 1990;167:216–21.CrossRefGoogle Scholar
  9. 9.
    Kuypers NJ, James KT, Enzmann GU, Magnuson DS, Whittemore SR. Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord. Exp Neurol. 2013;247:615–22.CrossRefGoogle Scholar
  10. 10.
    Crang AJ, Blakemore WF. Remyelination of demyelinated rat axons by transplanted mouse oligodendrocytes. Glia. 1991;4:305–13.CrossRefGoogle Scholar
  11. 11.
    Penderis J, Shields SA, Franklin RJ. Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain. 2003;126(Pt 6):1382–91.CrossRefGoogle Scholar
  12. 12.
    Graca DL, Blakemore WF. Delayed remyelination in rat spinal cord following ethidium bromide injection. Neuropathol Appl Neurobiol. 1986;12(6):593–605.CrossRefGoogle Scholar
  13. 13.
    Talbott JF, Loy DN, Liu Y, Qiu MS, Bunge MB, Rao MS, Whittemore SR. Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated spinal cord in the absence of astrocytes. Exp Neurol. 2005;192:11–24.CrossRefGoogle Scholar
  14. 14.
    Talbott JF, Cao Q, Achim V, Benton RL, Enzmann GU, Mills MD, Rao MS, Whittemore SR. Schwann cell differentiation of adult oligodendrocyte precursor cells engrafted into the demyelinated spinal cord is BMP-dependent. Glia. 2006;54:147–59.CrossRefGoogle Scholar
  15. 15.
    Miron VE, Franklin RJ. Macrophages and CNS remyelination. J Neurochem. 2014;130:165–71.CrossRefGoogle Scholar
  16. 16.
    Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, Raine CS, Rowitch DH, Franklin RJ, Stiles CD. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science. 2004;306:2111–5.CrossRefGoogle Scholar
  17. 17.
    Blakemore WF, Franklin RJ. Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol. 2008;318:193–212.PubMedGoogle Scholar
  18. 18.
    McKay JS, Blakemore WF, Franklin RJ. Trapidil-mediated inhibition of CNS remyelination results from reduced numbers and impaired differentiation of oligodendrocytes. Neuropathol Appl Neurobiol. 1998;24:498–506.CrossRefGoogle Scholar
  19. 19.
    Zhu Q, Whittemore SR, Devries WH, Zhao X, Kuypers NJ, Qiu M. Dorsally-derived oligodendrocytes in the spinal cord contribute to axonal myelination during development and remyelination following focal demyelination. Glia. 2011;59:1612–21.CrossRefGoogle Scholar
  20. 20.
    Keirstead HS, Blakemore WF. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol. 1997;56:1191–201.CrossRefGoogle Scholar
  21. 21.
    Kuypers NJ, Bankston AN, Howard RM, Beare JE, Whittemore SR. Remyelinating oligodendrocyte precursor cell miRNAs from the Sfmbt2 cluster promote cell cycle arrest and differentiation. J Neurosci. 2016;36:1698–710.CrossRefGoogle Scholar
  22. 22.
    Walshe JM. Copper: not too little, not too much, but just right. J R Coll Physicians Lond. 1995;29:280–8.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kipp M, Clarner T, Dang J, Copray S, Beyer C. The cuprizone animal model: new insights into an old story. Acta Neuropathol. 2009;118:723–36.CrossRefGoogle Scholar
  24. 24.
    Morell P, Barrett CV, Mason JL, Toews AD, Hostettler JD, Knapp GW, Matsushima GK. Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci. 1998;12:220–7.CrossRefGoogle Scholar
  25. 25.
    Jurevics H, Hostettler J, Muse ED, Sammond DW, Matsushima GK, Toews AD, Morell P. Cerebroside synthesis as a measure of the rate of remyelination following cuprizone-induced demyelination in brain. J Neurochem. 2001;77:1067–76.CrossRefGoogle Scholar
  26. 26.
    Tsunoda I, Fujinami RS. Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol. 1996;55:673–86.CrossRefGoogle Scholar
  27. 27.
    Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol. 1990;8:579–621.CrossRefGoogle Scholar
  28. 28.
    Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol. 2002;20:101–23.CrossRefGoogle Scholar
  29. 29.
    Alley J, Khasabov S, Simone D, Beitz A, Rodriguez M, Njenga MK. More severe neurologic deficits in SJL/J male than female mice following Theiler’s virus-induced CNS demyelination. Exp Neurol. 2003;180:14–24.CrossRefGoogle Scholar
  30. 30.
    Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164:1079–106.CrossRefGoogle Scholar
  31. 31.
    Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173–89.CrossRefGoogle Scholar
  32. 32.
    Mecha M, Carrillo-Salinas FJ, Mestre L, Feliu A, Guaza C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog Neurobiol. 2013;101–102:46–64.CrossRefGoogle Scholar
  33. 33.
    Franklin KBJ, Paxinos G. The mouse brain in stererotaxic coordinates. San Diego: Academic Press; 1997.Google Scholar
  34. 34.
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic; 1998.Google Scholar
  35. 35.
    Loy DN, Talbott JF, Onifer SM, Mills MD, Burke DA, Fajardo LC, Dennison JB, Magnuson DSK, Whittemore SR. Both dorsal and ventral spinal cord pathways contribute to overground locomotion in the adult rat. Exp Neurol. 2002;177:575–80.CrossRefGoogle Scholar
  36. 36.
    Loy DN, Magnuson DS, Zhang YP, Onifer SM, Mills MD, Cao QL, Darnall JB, Fajardo LC, Burke DA, Whittemore SR. Functional redundancy of ventral spinal locomotor pathways. J Neurosci. 2002;22:315–23.CrossRefGoogle Scholar
  37. 37.
    Hill RL, Zhang YP, Burke DA, Devries WH, Zhang Y, Magnuson DS, Whittemore SR, Shields CB. Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice. J Neurotrauma. 2009;26(1):1–15.CrossRefGoogle Scholar
  38. 38.
    Beaumont E, Onifer SM, Reed WR, Magnuson DS. Magnetically evoked inter-enlargement response: an assessment of ascending propriospinal fibers following spinal cord injury. Exp Neurol. 2006;201:428–40.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kariena R. Andres
    • 1
    • 2
  • Johnny R. Morehouse
    • 1
    • 2
  • Rachel Cary
    • 1
    • 2
  • Christine D. Yarberry
    • 1
    • 2
  • Nicholas J. Kuypers
    • 1
    • 2
    • 3
  • Scott R. Whittemore
    • 1
    • 2
    • 3
    Email author
  1. 1.Kentucky Spinal Cord Injury Research CenterUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Department of Neurological SurgeryUniversity of Louisville School of MedicineLouisvilleUSA
  3. 3.Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations