Advertisement

Solving Existence Problems via F-Reich Contraction

  • Mudasir Younis
  • Deepak Singh
  • Anil Goyal
Chapter

Abstract

The main assessment of this article is to furnish a new technique, based on F-Reich contraction, for solving some models of real world problems, viz. “concentration of a diffusing substance in an absorbing medium” and an integral equation. For this purpose, we inaugurate the notation of F-Reich contraction in the context of rectangular b-metric space and establish certain new fixed point results without taking into account the continuity of the mapping involved. Innovative approach of visualizing non-trivial examples gives a new direction especially to nonlinear problems pertinent to geometrical interpretation. Examples are hosted by a series of mappings containing transcendental terms along with nontrivial fixed points. Established results substantially theorize and improve F-contraction version of some prime results in the existing literature. At the end some open problems are also presented for potential readers.

References

  1. [Ba22]
    Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math., 3, 133–181 (1922).CrossRefGoogle Scholar
  2. [Br00]
    Branciari, A.: A fixed point theorem of Banach-Caccippoli type on a class of generalised metric spaces. Publ. Math. Debrecen, 57, 31–37 (2000).MathSciNetzbMATHGoogle Scholar
  3. [Cos14]
    Cosentino, M. and Vetro, P.: Fixed Point Results for F-Contractive Mappings of Hardy-Rogers-Type. Filomat, 28(4), 715–722 (2014).MathSciNetCrossRefGoogle Scholar
  4. [Cz93]
    Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis, 1(1), 5–11 (1993).MathSciNetzbMATHGoogle Scholar
  5. [DiEtAl15]
    Ding, H.S., Ozturk, V. and Radenović, S.: On some new fixed point results in b-rectangular metric spaces. J. Nonlinear Sci., 8, 378–86 (2015).MathSciNetCrossRefGoogle Scholar
  6. [GeEtAl15]
    George, R., Radenovic, S., Reshma, K.P., and Shukla, S.: Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl., 8(6), 1005–1013 (2015).MathSciNetCrossRefGoogle Scholar
  7. [Ka15]
    Kadelburg, Z. and Radenović, S.: Pata-type common fixed point results in b-metric and b-rectangular metric spaces. J. Nonlinear Sci. Appl., 8(6), 944–954 (2015).MathSciNetCrossRefGoogle Scholar
  8. [Ka68]
    Kannan, R: Some results on fixed points. Bull. Calcutta Math. Soc., 60, 71–76 (1968).MathSciNetzbMATHGoogle Scholar
  9. [Mi17]
    Mitrović, Z.D.: On An open problem in rectangular b-metric space. J. Anal., 25(1), 135–137 (2017).MathSciNetCrossRefGoogle Scholar
  10. [MiEtAl18]
    Mitrović, Z.D., George, R. and Hussain, N.: Some remarks on contraction mappings in rectangular b-metric spaces. Bol. Soc. Paran. Mat., 22(2), 1–9 (2018).Google Scholar
  11. [NaEtAl17]
    Nashine, H.K., Agarwal, R.P., Shukla, S. and Gupta, A.: Some Fixed Point Theorems for Almost (GF; δ b)-Contractions and Application. Fasciculi Mathematici, 58(1):123–43 (2017).MathSciNetCrossRefGoogle Scholar
  12. [Na17]
    Nashine, H.K., Kadelburg, Z.: Existence of solutions of cantilever beam problem via (α − β − FG)-contractions in b-metric-like spaces. Filomat, 31(11):3057–74 (2017).MathSciNetCrossRefGoogle Scholar
  13. [Pir14]
    Piri, H. and Kumam, P.: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl.,2014, 210(2014).Google Scholar
  14. [Re71]
    Reich, S.: Some remarks concerning contraction mappings., Canad. Math. Bull., 14, 121–124 (1971).MathSciNetCrossRefGoogle Scholar
  15. [Sec13]
    Secelean, N.A.: Iterated function system consisting of F-contractions. Fixed Point Theory Appl., 2013, https://doi.org/10.1166/1687-1812-2013-277, 277(2013).
  16. [SiEtAl17]
    Singh, D., Chauhan, V. and Altun I.: Common fixed point of a power graphic (F − ψ)-contraction pair on partial b-metric spaces with application. Nonlinear analysis: Modelling and control, 22(5), 662–678 (2017).MathSciNetCrossRefGoogle Scholar
  17. [SiEtAl18]
    Singh, D., Chauhan, V., Kumam, P. and Joshi. V.: Some applications of fixed point results for generalized two classes of Boyd-Wong’s F-contraction in partial b-metric spaces. Math. Sc., 12(2), 111–127 (2018).MathSciNetCrossRefGoogle Scholar
  18. [Ve16]
    Vetro, F.: F-contractions of Hardy-Rogers type and application to multistage decision processes. Nonlinear Anal. Model. Control, 21(4), 531–46 (2016).MathSciNetzbMATHGoogle Scholar
  19. [War12]
    Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., 2012, 94(2012).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mudasir Younis
    • 1
  • Deepak Singh
    • 2
  • Anil Goyal
    • 1
  1. 1.Department of Applied MathematicsUIT-Rajiv Gandhi Technological University (University of Technology of M.P.)BhopalIndia
  2. 2.Department of Applied SciencesNITTTR, Under Ministry of HRD, Government of IndiaBhopalIndia

Personalised recommendations