Advertisement

Nutrition, Immunity, and Neurological Diseases

  • Seema Patel
Chapter

Abstract

A diverse range of agents, from biological and chemical to mechanical, can be perceived as stressors by the immune system. Even the diet, depending on its components and dosage, can provoke the immune system. Processed foods are acidogenic which lower the pH of the extracellular matrix (ECM), causing an aberrant enzyme activity. The consequent agitated immune system is linked to all pathologies including infections, metabolic disorders, and autoimmune diseases. Disturbed immunity has also been implicated in neuropathologies. Inflammation, which perturbs the neuro-endocrine-immune axis, is the central mechanism related to neural issues. During inflammation, the weapons of the innate immune system, cytokines, produce reactive oxygen species (ROS) and reactive nitrogen species (RNS), which cause damage to the organs. Mapping of disease-specific biomarkers has showed the correlation between the aberrant expression of neural, immune, and metabolic mediators (insulin, leptin, cytokine, angiotensin II, serine protease, aromatase, estrogen, and neurotransmitters) and neural ailments such as multiple sclerosis, depression, autism, and dementia, among others. In this manner, the immunometabolic mechanisms control the neural health through interacting signaling pathways such as the hypothalamic-pituitary-adrenal (HPA) axis and renin-angiotensin-aldosterone system (RAAS). For a clearer picture of these connections, this chapter discusses the nexus between diet, immune system, and neural system.

Keywords

Immune system Inflammation Nutrition Neurological diseases 

References

  1. 1.
    Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357:1777–89.  https://doi.org/10.1016/S0140-6736(00)04904-7.CrossRefPubMedGoogle Scholar
  2. 2.
    Patel S. Under the superficial dichotomy pathogen and allergen are two manifestations of same immune activation and pathogenesis mechanisms. Allergol Immunopathol (Madr). 2017;45:619.  https://doi.org/10.1016/j.aller.2017.01.004.CrossRefGoogle Scholar
  3. 3.
    Patel S. Inflammasomes, the cardinal pathology mediators are activated by pathogens, allergens and mutagens: a critical review with focus on NLRP3. Biomed Pharmacother. 2017;92:819–25.  https://doi.org/10.1016/j.biopha.2017.05.126.CrossRefPubMedGoogle Scholar
  4. 4.
    Patel S. A critical review on serine protease: key immune manipulator and pathology mediator. Allergol Immunopathol (Madr). 2017;45:579.  https://doi.org/10.1016/j.aller.2016.10.011.CrossRefGoogle Scholar
  5. 5.
    Patel S. Disruption of aromatase homeostasis as the cause of a multiplicity of ailments: a comprehensive review. J Steroid Biochem Mol Biol. 2017;168:19–25.  https://doi.org/10.1016/j.jsbmb.2017.01.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Patel S. Stressor-driven extracellular acidosis as tumor inducer via aberrant enzyme activation: a review on the mechanisms and possible prophylaxis. Gene. 2017;626:209–14.  https://doi.org/10.1016/j.gene.2017.05.043.CrossRefPubMedGoogle Scholar
  7. 7.
    Patel S, Akhtar N. Antimicrobial peptides (AMPs): the quintessential “offense and defense” molecules are more than antimicrobials. Biomed Pharmacother. 2017;95:1276–83.  https://doi.org/10.1016/j.biopha.2017.09.042.CrossRefPubMedGoogle Scholar
  8. 8.
    Tőzsér J, Benkő S. Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1β production. Mediat Inflamm. 2016;2016:5460302.  https://doi.org/10.1155/2016/5460302.CrossRefGoogle Scholar
  9. 9.
    Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in cancer. Front Physiol. 2013;4:370.  https://doi.org/10.3389/fphys.2013.00370.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dominguez R, Holmes KC. Actin structure and function. Annu Rev Biophys. 2011;40:169–86.  https://doi.org/10.1146/annurev-biophys-042910-155359.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    von der Ecken J, Müller M, Lehman W, Manstein DJ, Penczek PA, Raunser S. Structure of the F-actin-tropomyosin complex. Nature. 2015;519:114–7.  https://doi.org/10.1038/nature14033.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Konieczna I, Zarnowiec P, Kwinkowski M, Kolesinska B, Fraczyk J, Kaminski Z, Kaca W. Bacterial urease and its role in long-lasting human diseases. Curr Protein Pept Sci. 2012;13:789–806.  https://doi.org/10.2174/138920312804871094.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu C-H, Huang M-Y, Yeh C-S, Wang J-Y, Cheng T-L, Lin S-R. Overexpression of helicobacter pylori-associated urease mRNAs in human gastric cancer. DNA Cell Biol. 2007;26:641–8.  https://doi.org/10.1089/dna.2007.0599.CrossRefPubMedGoogle Scholar
  14. 14.
    Patel S, Rani A, Goyal A. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling. Comput Biol Chem. 2017;70:31–9.  https://doi.org/10.1016/j.compbiolchem.2017.07.006.CrossRefPubMedGoogle Scholar
  15. 15.
    Patel S, Meher BR. A review on emerging frontiers of house dust mite and cockroach allergy research. Allergol Immunopathol (Madr). 2016;44:580.  https://doi.org/10.1016/j.aller.2015.11.001.CrossRefGoogle Scholar
  16. 16.
    Parronchi P, Brugnolo F, Sampognaro S, Maggi E. Genetic and environmental factors contributing to the onset of allergic disorders. Int Arch Allergy Immunol. 2000;121:2–9.CrossRefGoogle Scholar
  17. 17.
    Baxi SN, Phipatanakul W. The role of allergen exposure and avoidance in asthma. Adolesc Med State Art Rev. 2010;21:57–71, viii–ix. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2975603&tool=pmcentrez&rendertype=abstract. Accessed 24 Feb 2015.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017;94:317–25.  https://doi.org/10.1016/j.biopha.2017.07.091.CrossRefPubMedGoogle Scholar
  19. 19.
    Živković M, Kolaković A, Stojković L, Dinčić E, Kostić S, Alavantić D, Stanković A. Renin-angiotensin system gene polymorphisms as risk factors for multiple sclerosis. J Neurol Sci. 2016;363:29–32.  https://doi.org/10.1016/j.jns.2016.02.026.CrossRefPubMedGoogle Scholar
  20. 20.
    Thethi T, Kamiyama M, Kobori H. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep. 2012;14:160–9.  https://doi.org/10.1007/s11906-012-0245-z.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Segura J, Ruilope LM. Obesity, essential hypertension and renin-angiotensin system. Public Health Nutr. 2007;10:1151–5.  https://doi.org/10.1017/S136898000700064X.CrossRefPubMedGoogle Scholar
  22. 22.
    Cifuentes D, Poittevin M, Dere E, Broquères-You D, Bonnin P, Benessiano J, Pocard M, Mariani J, Kubis N, Merkulova-Rainon T, Lévy BI. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease. Hypertension. 2015;65:218–24.  https://doi.org/10.1161/HYPERTENSIONAHA.114.04139.CrossRefPubMedGoogle Scholar
  23. 23.
    O’Hagan TS, Wharton W, Kehoe PG. Interactions between oestrogen and the renin angiotensin system – potential mechanisms for gender differences in Alzheimer’s disease. Am J Neurodegener Dis. 2012;1:266–79. http://www.ncbi.nlm.nih.gov/pubmed/23383397. Accessed 25 Aug 2016.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lu K-T, Keen HL, Weatherford ET, Sequeira-Lopez MLS, Gomez RA, Sigmund CD. Estrogen receptor α is required for maintaining baseline renin expression. Hypertension. 2016;67:992–9.  https://doi.org/10.1161/HYPERTENSIONAHA.115.07082.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Abraham A, Roga G. Topical steroid-damaged skin. Indian J Dermatol. 2014;59:456–9.  https://doi.org/10.4103/0019-5154.139872.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Coondoo A, Phiske M, Verma S, Lahiri K. Side-effects of topical steroids: a long overdue revisit. Indian Dermatol Online J. 2014;5:416–25.  https://doi.org/10.4103/2229-5178.142483.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lotti T, Buggiani G, Troiano M, Assad GB, Delescluse J, De Giorgi V, Hercogova J. Targeted and combination treatments for vitiligo. Comparative evaluation of different current modalities in 458 subjects. Dermatol Ther. 2008;21(Suppl 1):S20–6.  https://doi.org/10.1111/j.1529-8019.2008.00198.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Fishman JA. Opportunistic infections--coming to the limits of immunosuppression? Cold Spring Harb Perspect Med. 2013;3:a015669.  https://doi.org/10.1101/cshperspect.a015669.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu S. Meat and cheese may be as bad as smoking | USC news, USC news; 2014. https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/.
  30. 30.
    Barzel US, Massey LK. Excess dietary protein can adversely affect bone. J Nutr. 1998;128:1048–50.CrossRefGoogle Scholar
  31. 31.
    Yadav SK, Mindur JE, Ito K, Dhib-Jalbut S. Advances in the immunopathogenesis of multiple sclerosis. Curr Opin Neurol. 2015;28:206–19.  https://doi.org/10.1097/WCO.0000000000000205.CrossRefPubMedGoogle Scholar
  32. 32.
    Gągało I, Rusiecka I, Kocić I. Tyrosine kinase inhibitor as a new therapy for ischemic stroke and other neurologic diseases: is there any hope for a better outcome? Curr Neuropharmacol. 2015;13:836–44. http://www.ncbi.nlm.nih.gov/pubmed/26630962. Accessed 23 Aug 2016.CrossRefGoogle Scholar
  33. 33.
    Hinz M, Stein A, Uncini T. Amino acid management of Parkinson’s disease: a case study. Int J Gen Med. 2011;4:165–74.  https://doi.org/10.2147/IJGM.S16621.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shabbir F, Patel A, Mattison C, Bose S, Krishnamohan R, Sweeney E, Sandhu S, Nel W, Rais A, Sandhu R, Ngu N, Sharma S. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013;62:324–9.  https://doi.org/10.1016/j.neuint.2012.12.014.CrossRefPubMedGoogle Scholar
  35. 35.
    Parke DV, Lewis DF. Safety aspects of food preservatives. Food Addit Contam. 1992;9:561–77.  https://doi.org/10.1080/02652039209374110.CrossRefPubMedGoogle Scholar
  36. 36.
    Aschebrook-Kilfoy B, Ward MH, Gierach GL, Schatzkin A, Hollenbeck AR, Sinha R, Cross AJ. Epithelial ovarian cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study. Eur J Cancer Prev. 2012;21:65–72.  https://doi.org/10.1097/CEJ.0b013e328347622f.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dellavalle CT, Xiao Q, Yang G, Shu X-O, Aschebrook-Kilfoy B, Zheng W, Lan Li H, Ji B-T, Rothman N, Chow W-H, Gao Y-T, Ward MH. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study. Int J Cancer. 2014;134:2917–26.  https://doi.org/10.1002/ijc.28612.CrossRefPubMedGoogle Scholar
  38. 38.
    Dellavalle CT, Daniel CR, Aschebrook-Kilfoy B, Hollenbeck AR, Cross AJ, Sinha R, Ward MH. Dietary intake of nitrate and nitrite and risk of renal cell carcinoma in the NIH-AARP Diet and Health Study. Br J Cancer. 2013;108:205–12.  https://doi.org/10.1038/bjc.2012.522.CrossRefPubMedGoogle Scholar
  39. 39.
    Feingold BF. The role of diet in behaviour. Ecol Dis. 1982;1:153–65. http://www.ncbi.nlm.nih.gov/pubmed/6090095. Accessed 3 April 2015.PubMedGoogle Scholar
  40. 40.
    Bateman B. The effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children. Arch Dis Child. 2004;89:506–11.  https://doi.org/10.1136/adc.2003.031435.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Konikowska K, Regulska-Ilow B, Rózańska D. The influence of components of diet on the symptoms of ADHD in children. Rocz Państwowego Zakładu Hig. 2012;63:127–34. http://www.ncbi.nlm.nih.gov/pubmed/22928358. Accessed 7 Mar 2015.Google Scholar
  42. 42.
    Mizutani T. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner. J Environ Public Health. 2009;2009:1.  https://doi.org/10.1155/2009/953952.CrossRefGoogle Scholar
  43. 43.
    Allen LH. Food safety: heavy metals. In: Encyclopedia of human nutrition. Amsterdam: Academic Press; 2012. p. 331–6.  https://doi.org/10.1016/B978-0-12-375083-9.00126-4.CrossRefGoogle Scholar
  44. 44.
    Gwaltney-Brant SM. Heavy metals. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Handbook of toxicologic pathology. Amsterdam: Academic Press; 2013. p. 1315–47.  https://doi.org/10.1016/B978-0-12-415759-0.00041-8.CrossRefGoogle Scholar
  45. 45.
    Skypala IJ, Williams M, Reeves L, Meyer R, Venter C. Sensitivity to food additives, vaso-active amines and salicylates: a review of the evidence. Clin Transl Allergy. 2015;5:34.  https://doi.org/10.1186/S13601-015-0078-3.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Linton SM, Cameron MS, Gray MC, Donald JA, Saborowski R, von Bergen M, Tomm JM, Allardyce BJ. A glycosyl hydrolase family 16 gene is responsible for the endogenous production of β-1,3-glucanases within decapod crustaceans. Gene. 2015;569:203–17.  https://doi.org/10.1016/j.gene.2015.05.056.CrossRefPubMedGoogle Scholar
  47. 47.
    Patel S. Fragrance compounds: the wolves in sheep’s clothings. Med Hypotheses. 2017;102:106–11.  https://doi.org/10.1016/j.mehy.2017.03.025.CrossRefPubMedGoogle Scholar
  48. 48.
    Toe AM, Ouedraogo M, Ouedraogo R, Ilboudo S, Guissou PI. Pilot study on agricultural pesticide poisoning in Burkina Faso. Interdiscip Toxicol. 2013;6:185–91.  https://doi.org/10.2478/intox-2013-0027.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mathew P, Jose A, Alex RG, Mohan VR. Chronic pesticide exposure: health effects among pesticide sprayers in Southern India. Indian J Occup Environ Med. 2015;19:95–101.  https://doi.org/10.4103/0019-5278.165334.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Morris MC l, Brockman J, Schneider JA, Wang Y, Bennett DA, Tangney CC, van de Rest O. Association of Seafood Consumption, brain mercury level, and APOE ε4 status with brain neuropathology in older adults. JAMA. 2016;315:489–97.  https://doi.org/10.1001/jama.2015.19451.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Miyake K, Tanaka T, McNeil PL. Lectin-based food poisoning: a new mechanism of protein toxicity. PLoS One. 2007;2:e687.  https://doi.org/10.1371/journal.pone.0000687.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dolan LC, Matulka RA, Burdock GA. Naturally occurring food toxins. Toxins (Basel). 2010;2:2289–332.  https://doi.org/10.3390/toxins2092289.CrossRefGoogle Scholar
  53. 53.
    Bradley WG, Mash DC. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler. 2009;10(Suppl 2):7–20.  https://doi.org/10.3109/17482960903286009.CrossRefPubMedGoogle Scholar
  54. 54.
    Khandare AL, Babu JJ, Ankulu M, Aparna N, Shirfule A, Rao GS. Grass pea consumption & present scenario of neurolathyrism in Maharashtra State of India. Indian J Med Res. 2014;140:96–101. http://www.ncbi.nlm.nih.gov/pubmed/25222783. Accessed 29 Oct 2016.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Singh SS, Rao SLN. Lessons from neurolathyrism: a disease of the past & the future of Lathyrus sativus (Khesari dal). Indian J Med Res. 2013;138:32–7. http://www.ncbi.nlm.nih.gov/pubmed/24056554. Accessed 29 Oct 2016.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gleadow R, Pegg A, Blomstedt CK. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions. J Exp Bot. 2016;67:5403–13.  https://doi.org/10.1093/jxb/erw302.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sang-A-Gad P, Guharat S, Wananukul W. A mass cyanide poisoning from pickling bamboo shoots. Clin Toxicol (Phila). 2011;49:834–9.  https://doi.org/10.3109/15563650.2011.618456.CrossRefGoogle Scholar
  58. 58.
    Bissinger R, Modicano P, Alzoubi K, Honisch S, Faggio C, Abed M, Lang F. Effect of saponin on erythrocytes. Int J Hematol. 2014;100:51–9.  https://doi.org/10.1007/s12185-014-1605-z.CrossRefPubMedGoogle Scholar
  59. 59.
    Kowalski LM, Bujko J. Evaluation of biological and clinical potential of paleolithic diet. Rocz Panstw Zakl Hig. 2012;63:9–15. http://www.ncbi.nlm.nih.gov/pubmed/22642064. Accessed 21 Oct 2016.PubMedGoogle Scholar
  60. 60.
    Collins MA. Alkaloids, alcohol and Parkinson’s disease. Parkinsonism Relat Disord. 2002;8:417–22. http://www.ncbi.nlm.nih.gov/pubmed/12217630. Accessed 8 Oct 2016.CrossRefGoogle Scholar
  61. 61.
    Schardl CL, Panaccione DG, Tudzynski P. Ergot alkaloids--biology and molecular biology. Alkaloids Chem Biol. 2006;63:45–86. http://www.ncbi.nlm.nih.gov/pubmed/17133714. Accessed 3 Aug 2016.CrossRefGoogle Scholar
  62. 62.
    Hung OL, Calello DP. Poisonous mushroom ingestions presenting to northeast us emergency departments from 1996–2010. Clin Toxicol. 2013;51:266–7.  https://doi.org/10.3109/15563650.2013.785188.CrossRefGoogle Scholar
  63. 63.
    Patel S, Suleria HAR. Ethnic and paleolithic diet: where do they stand in inflammation alleviation? a discussion. J Ethn Foods. 2017;4:236.  https://doi.org/10.1016/j.jef.2017.10.004.CrossRefGoogle Scholar
  64. 64.
    Klonoff DC. The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. J Diabetes Sci Technol. 2009;3:1229–32. http://www.ncbi.nlm.nih.gov/pubmed/20144375. Accessed 21 Oct 2016.CrossRefGoogle Scholar
  65. 65.
    Patel S, Goyal A. The current trends and future perspectives of prebiotics research: a review. 3 Biotech. 2012;2:115–25.  https://doi.org/10.1007/s13205-012-0044-x.CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Patel S, Shukla R, Goyal A. Probiotics in valorization of innate immunity across various animal models. J Funct Foods. 2015;14:549–61.  https://doi.org/10.1016/j.jff.2015.02.022.CrossRefGoogle Scholar
  67. 67.
    Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12.  https://doi.org/10.1038/nrn3346.CrossRefGoogle Scholar
  68. 68.
    Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci. 2013;7:70.  https://doi.org/10.3389/fnint.2013.00070.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dinan TG, Cryan JF. Gut-brain axis in 2016: brain-gut-microbiota axis-mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol. 2017;14:69–70.  https://doi.org/10.1038/nrgastro.2016.200.CrossRefPubMedGoogle Scholar
  70. 70.
    Patel S. Emerging trends in nutraceutical applications of whey protein and its derivatives. J Food Sci Technol. 2015;52:6847–58.  https://doi.org/10.1007/s13197-015-1894-0.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Patel S. Cereal bran: the next super food with significant antioxidant and anticancer potential. Med J Nutr Metab. 2012;5:91–104.  https://doi.org/10.1007/s12349-012-0091-1.CrossRefGoogle Scholar
  72. 72.
    Patel S. Cereal bran fortified-functional foods for obesity and diabetes management: triumphs, hurdles and possibilities. J Funct Foods. 2015;14:255–69.  https://doi.org/10.1016/j.jff.2015.02.010.CrossRefGoogle Scholar
  73. 73.
    Patel S. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech. 2012;2:171–85.  https://doi.org/10.1007/s13205-012-0061-9.CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Patel S, Goyal A. Functional oligosaccharides: production, properties and applications. World J Microbiol Biotechnol. 2010;27:1119–28.  https://doi.org/10.1007/s11274-010-0558-5.CrossRefGoogle Scholar
  75. 75.
    Kothari D, Patel S, Goyal A. Therapeutic spectrum of nondigestible oligosaccharides: overview of current state and prospect. J Food Sci. 2014;79:R1491–8.  https://doi.org/10.1111/1750-3841.12536.CrossRefPubMedGoogle Scholar
  76. 76.
    Patel S, Shukla S. Fermentation of food wastes for generation of nutraceuticals and supplements. In: Fermented foods in health and disease prevention. Amsterdam: Elsevier; 2017. p. 707–34.  https://doi.org/10.1016/B978-0-12-802309-9.00030-3.CrossRefGoogle Scholar
  77. 77.
    Patel S, Goyal A. Current and prospective insights on food and pharmaceutical applications of Spirulina. Curr Trends Biotechnol Pharm. 2013;7:696–707.Google Scholar
  78. 78.
    Patel S. Nutraceuticals from marine derived krill oil with immense heath potentials. Curr Trends Biotechnol Pharm. 2014;8:439–48.Google Scholar
  79. 79.
    Patel S. Functional food red yeast rice (RYR) for metabolic syndrome amelioration: a review on pros and cons. World J Microbiol Biotechnol. 2016;32:87.  https://doi.org/10.1007/s11274-016-2035-2.CrossRefPubMedGoogle Scholar
  80. 80.
    Patel S. Green tea as a nutraceutical: the latest developments. Food Sci Technol Res. 2013;19:923–32.  https://doi.org/10.3136/fstr.19.923.CrossRefGoogle Scholar
  81. 81.
    Patel S. Emerging bioresources with nutraceutical and pharmaceutical prospects. Cham: Springer International Publishing; 2015.  https://doi.org/10.1007/978-3-319-12847-4.CrossRefGoogle Scholar
  82. 82.
    Patel S. Food, health and agricultural importance of truffles: a review of current scientific literature. Curr Trends Biotechnol Pharm. 2012;6:15–27. http://www.indianjournals.com/ijor.aspx?target=ijor:ctbp&volume=6&issue=1&article=002. Accessed 25 June 2015.Google Scholar
  83. 83.
    Patel S, Rauf A, Khan H, Khalid S, Mubarak MS. Potential health benefits of natural products derived from truffles: a review. Trends Food Sci Technol. 2017;70:1–8.  https://doi.org/10.1016/j.tifs.2017.09.009.CrossRefGoogle Scholar
  84. 84.
    Patel S. Hibiscus sabdariffa: an ideal yet under-exploited candidate for nutraceutical applications. Biomed Prev Nutr. 2014;4:23–7.  https://doi.org/10.1016/j.bionut.2013.10.004.CrossRefGoogle Scholar
  85. 85.
    Patel S. Pumpkin (Cucurbita sp.) seeds as nutraceutic: a review on status quo and scopes. Med J Nutr Metab. 2013;6:183–9.  https://doi.org/10.1007/s12349-013-0131-5.CrossRefGoogle Scholar
  86. 86.
    Patel S. Rose hip as an underutilized functional food: evidence-based review. Trends Food Sci Technol. 2017;63:29–38.  https://doi.org/10.1016/j.tifs.2017.03.001.CrossRefGoogle Scholar
  87. 87.
    Patel S. Opuntia cladodes (nopal): emerging functional food and dietary supplement. Med J Nutr Metab. 2014;7:11–9.  https://doi.org/10.3233/MNM-140003.CrossRefGoogle Scholar
  88. 88.
    Patel S. Nutrition, safety, market status quo appraisal of emerging functional food corn smut (huitlacoche). Trends Food Sci Technol. 2016;57:93–102.  https://doi.org/10.1016/j.tifs.2016.09.006.CrossRefGoogle Scholar
  89. 89.
    Rauf A, Imran M, Patel S, Muzaffar R, Bawazeer SS. Rutin: exploitation of the flavonol for health and homeostasis. Biomed Pharmacother. 2017;96:1559–61.  https://doi.org/10.1016/j.biopha.2017.08.136.CrossRefPubMedGoogle Scholar
  90. 90.
    Khan H, Patel S, Kamal MA. Pharmacological and toxicological profile of harmane-β-carboline alkaloid: friend or foe. Curr Drug Metab. 2017;18:853–7.  https://doi.org/10.2174/1389200218666170607100947.CrossRefPubMedGoogle Scholar
  91. 91.
    Patel S, Panda S. Emerging roles of mistletoes in malignancy management. 3 Biotech. 2013;4:13–20.  https://doi.org/10.1007/s13205-013-0124-6.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Chen L, Lin Z, Zhu Y, Lin N, Zhang J, Pan X, Chen X. Ginsenoside Rg1 attenuates β-amyloid generation via suppressing PPARγ-regulated BACE1 activity in N2a-APP695 cells. Eur J Pharmacol. 2012;675:15–21.  https://doi.org/10.1016/j.ejphar.2011.11.039.CrossRefPubMedGoogle Scholar
  93. 93.
    Barnes J, Anderson LA, Gibbons S, Phillipson JD. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol. 2005;57:929–54.  https://doi.org/10.1211/0022357056127.CrossRefPubMedGoogle Scholar
  94. 94.
    Wilasrusmee C, Kittur S, Shah G, Siddiqui J, Bruch D, Wilasrusmee S, Kittur DS. Immunostimulatory effect of Silybum Marianum (milk thistle) extract. Med Sci Monit. 2002;8:BR439–43. http://www.ncbi.nlm.nih.gov/pubmed/12444368 (accessed June 19, 2015PubMedGoogle Scholar
  95. 95.
    Szczurko O, Shear N, Taddio A, Boon H. Ginkgo biloba for the treatment of vitilgo vulgaris: an open label pilot clinical trial. BMC Complement Altern Med. 2011;11:21.  https://doi.org/10.1186/1472-6882-11-21.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Saini RK, Manoj P, Shetty NP, Srinivasan K, Giridhar P. Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model. J Food Sci Technol. 2016;53:511–20.  https://doi.org/10.1007/s13197-015-1828-x.CrossRefPubMedGoogle Scholar
  97. 97.
    Patel S, Rauf A. Adaptogenic herb ginseng (Panax) as medical food: status quo and future prospects. Biomed Pharmacother. 2017;85:120–7.  https://doi.org/10.1016/j.biopha.2016.11.112.CrossRefPubMedGoogle Scholar
  98. 98.
    Rauf A, Ali J, Khan H, Mubarak MS, Patel S, Emerging CAM. Ziziphus nummularia with in vivo sedative-hypnotic, antipyretic and analgesic attributes. 3 Biotech. 2016;6:1–10.  https://doi.org/10.1007/s13205-015-0322-5.CrossRefGoogle Scholar
  99. 99.
    Rauf A, Uddin G, Raza M, Patel S, Bawazeer S, Ben Hadda T, Jehan N, Mabkhot YN, Khan A, Mubarak MS. Urease inhibition potential of Di-naphthodiospyrol from Diospyros lotus roots. Nat Prod Res. 2016;31:1–5.  https://doi.org/10.1080/14786419.2016.1226832.CrossRefGoogle Scholar
  100. 100.
    Rauf A, Patel S. Pistagremic acid as a broad spectrum natural inhibitor from Pistacia integerrima Stewart. Nat Prod Res. 2017;31:367–8.  https://doi.org/10.1080/14786419.2016.1188099.CrossRefPubMedGoogle Scholar
  101. 101.
    Patel S. Phytochemicals for taming agitated immune-endocrine-neural axis. Biomed Pharmacother. 2017;91:767–75.  https://doi.org/10.1016/j.biopha.2017.05.010.CrossRefPubMedGoogle Scholar
  102. 102.
    Barkatullah M, Ibrar A, Rauf T, Ben Hadda MS, Mubarak SP. Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. J Ethnopharmacol. 2015;169:335–46.  https://doi.org/10.1016/j.jep.2015.04.052.CrossRefPubMedGoogle Scholar
  103. 103.
    Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2:1–15.  https://doi.org/10.1007/s13205-011-0036-2.CrossRefPubMedGoogle Scholar
  104. 104.
    Altomare R, Cacciabaudo F, Damiano G, Palumbo VD, Gioviale MC, Bellavia M, Tomasello G, Lo Monte AI. The mediterranean diet: a history of health. Iran J Public Health. 2013;42:449–57. http://www.ncbi.nlm.nih.gov/pubmed/23802101. Accessed 15 Oct 2016.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Del Chierico F, Vernocchi P, Dallapiccola B, Putignani L. Mediterranean diet and health: food effects on gut microbiota and disease control. Int J Mol Sci. 2014;15:11678–99.  https://doi.org/10.3390/ijms150711678.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Dontas AS, Zerefos NS, Panagiotakos DB, Vlachou C, Valis DA. Mediterranean diet and prevention of coronary heart disease in the elderly. Clin Interv Aging. 2007;2:109–15. http://www.ncbi.nlm.nih.gov/pubmed/18044083. Accessed 15 Oct 2016.CrossRefGoogle Scholar
  107. 107.
    Castro-Quezada I, Román-Viñas B, Serra-Majem L. The Mediterranean diet and nutritional adequacy: a review. Nutrients. 2014;6:231–48.  https://doi.org/10.3390/nu6010231.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Asero R, Mistrello G, Roncarolo D, Amato S. Detection of some safe plant-derived foods for LTP-allergic patients. Int Arch Allergy Immunol. 2007;144:57–63.  https://doi.org/10.1159/000102615.CrossRefPubMedGoogle Scholar
  109. 109.
    Hauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010;6(1):1.  https://doi.org/10.1186/1710-1492-6-1.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Liu R, Holck AL, Yang E, Liu C, Xue W. Tropomyosin from tilapia (Oreochromis mossambicus) as an allergen. Clin Exp Allergy. 2013;43:365–77.  https://doi.org/10.1111/cea.12056.CrossRefPubMedGoogle Scholar
  111. 111.
    Reese G, Ayuso R, Lehrer SB. Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol. 1999;119:247–58.CrossRefGoogle Scholar
  112. 112.
    Hollon J, Puppa EL, Greenwald B, Goldberg E, Guerrerio A, Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients. 2015;7:1565–76.  https://doi.org/10.3390/nu7031565.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Kuhn C, Weiner HL. How does the immune system tolerate food? Science. 2016;351:810–1.  https://doi.org/10.1126/science.aaf2167.CrossRefPubMedGoogle Scholar
  114. 114.
    Yelland GW. Gluten-induced cognitive impairment (“brain fog”) in coeliac disease. J Gastroenterol Hepatol. 2017;32:90–3.  https://doi.org/10.1111/jgh.13706.CrossRefPubMedGoogle Scholar
  115. 115.
    Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, Schelling G, Morukov B, Choukèr A. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015;166:103–10.  https://doi.org/10.1016/j.trsl.2014.11.007.CrossRefPubMedGoogle Scholar
  116. 116.
    I. of M. (US) C. on M.N. Research, Amino acid and protein requirements: cognitive performance, stress, and brain function; 1999. https://www.ncbi.nlm.nih.gov/books/NBK224629/. Accessed 12 Feb 2018.
  117. 117.
    Prousky JE. Pellagra may be a rare secondary complication of anorexia nervosa: a systematic review of the literature. Altern Med Rev. 2003;8:180–5.PubMedGoogle Scholar
  118. 118.
    Vucetic Z, Carlin JL, Totoki K, Reyes TM. Epigenetic dysregulation of the dopamine system in diet-induced obesity. J Neurochem. 2012;120:891–8.  https://doi.org/10.1111/j.1471-4159.2012.07649.x.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:1.  https://doi.org/10.1155/2014/474296.CrossRefGoogle Scholar
  120. 120.
    Zempleni J, Hassan YI, Wijeratne SSK. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab. 2008;3:715–24.  https://doi.org/10.1586/17446651.3.6.715.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Youssef D, Bailey B, Atia A, El-Abbassi A, Manning T, Peiris AN. Differences in outcomes between cholecalciferol and ergocalciferol supplementation in veterans with inflammatory bowel disease. Geriatr Gerontol Int. 2012;12:475–80.  https://doi.org/10.1111/j.1447-0594.2011.00798.x.CrossRefPubMedGoogle Scholar
  122. 122.
    Wu C-H, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron DM, Kost JE, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C, Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz JA, Xu Z-S, van den Berg LH, Glass JD, Siciliano G, Cirulli ET, Goldstein DB, Salachas F, Meininger V, Rossoll W, Ratti A, Gellera C, Bosco DA, Bassell GJ, Silani V, Drory VE, Brown RH, Landers JE. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488:499–503.  https://doi.org/10.1038/nature11280.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Lin F, Qin Z-H. Degradation of misfolded proteins by autophagy: is it a strategy for Huntington’s disease treatment? J Huntingtons Dis. 2013;2:149–57.  https://doi.org/10.3233/JHD-130052.CrossRefPubMedGoogle Scholar
  124. 124.
    Otomo A, Pan L, Hadano S. Dysregulation of the autophagy-endolysosomal system in amyotrophic lateral sclerosis and related motor neuron diseases. Neurol Res Int. 2012;2012:1.  https://doi.org/10.1155/2012/498428.CrossRefGoogle Scholar
  125. 125.
    Michaelsen-Preusse K, Zessin S, Grigoryan G, Scharkowski F, Feuge J, Remus A, Korte M. Neuronal profilins in health and disease: relevance for spine plasticity and fragile X syndrome. Proc Natl Acad Sci U S A. 2016;113:3365–70.  https://doi.org/10.1073/pnas.1516697113.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Kazatsky AM, Wood RA. Classification of food allergens and cross-reactivity. Curr Allergy Asthma Rep. 2016;16:22.  https://doi.org/10.1007/s11882-016-0601-1.CrossRefPubMedGoogle Scholar
  127. 127.
    Mandl JN, Germain RN. Focusing in on T cell cross-reactivity. Cell. 2014;157:1006–8.  https://doi.org/10.1016/j.cell.2014.05.002.CrossRefPubMedGoogle Scholar
  128. 128.
    Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003;4:315–22.  https://doi.org/10.1038/nrg1047.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Seema Patel
    • 1
  1. 1.Bioinformatics and Medical Informatics Research CenterSan Diego State UniversitySan DiegoUSA

Personalised recommendations