Advertisement

Curious2018 pp 75-85 | Cite as

Neglected Parasitic Infections and the Syndemic Anemia Vaccines for Africa

  • Peter J. HotezEmail author
  • Ulrich Strych
  • Maria Elena Bottazzi
Chapter

Abstract

Today, malaria, schistosomiasis, and human hookworm infection comprise three of the most common parasitic diseases on the African continent. These neglected parasitic infections also represent important threats to maternal–child health in sub-Saharan Africa, particularly because they cause profound anemia. Malaria, schistosomiasis, and hookworm infection each cause severe anemia, but they are also co-endemic or syndemic and produce additive effects when occurring simultaneously in a single individual, especially a child or pregnant woman. In young children, the combined anemia from these parasitic infections can lead to permanent neurologic deficits, while in pregnant women they are linked to high maternal morbidity and mortality and decreased infant survival. While mass treatments for malaria, schistosomiasis, and human hookworm infection have led to some reductions in maternal–child morbidities in Africa, it is unlikely this approach alone will remain sustainable due to high rates of post-treatment reinfections and other factors, including variable efficacies of the currently available drugs, as well as the prospect of emerging resistance. As complementary or synergistic approaches, there are ongoing efforts to develop vaccines for malaria, human hookworm infection, and schistosomiasis. These biotechnologies would represent innovative approaches to reducing or halting maternal–child health anemia in Africa. Mosquirix is the first malaria vaccine licensed for Africa, while vaccines for schistosomiasis and human hookworm infection are each entering their proof of concept for efficacy in phase 2 clinical trials. New public–private strategic alliances, including the one formed between Merck and Baylor College of Medicine and its international vaccine product development partnership (PDP), the Texas Children’s Hospital Center for Vaccine Development (Texas Children’s CVD), to advance the schistosomiasis vaccine, will be essential to help accelerate vaccine research and development for neglected and emerging infections. These types of partnerships will also require innovative financial instruments to address traditional market failures, allowing licensing and the introduction of anti-parasitic disease vaccines for Africa.

References

  1. 1.
    Hotez PJ. Forgotten people, forgotten diseases: the neglected tropical diseases and their impact on global health and development. 2nd ed. Washington, DC: ASM Press; 2013. xviii, 255 p.Google Scholar
  2. 2.
    Molyneux DH, Hotez PJ, Fenwick A. “Rapid-impact interventions”: how a policy of integrated control for Africa’s neglected tropical diseases could benefit the poor. PLoS Med. 2005;2(11):e336.  https://doi.org/10.1371/journal.pmed.0020336 (PubMed PMID: 16212468; PMCID: 1253619).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reinhard-Rupp J, Klohe K. Developing a comprehensive response for treatment of children under 6 years of age with schistosomiasis: research and development of a pediatric formulation of praziquantel. Infect Dis Poverty. 2017;6(1):122.  https://doi.org/10.1186/s40249-017-0336-9 (PubMed PMID: 28768535; PMCID: PMC5541653).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hotez PJ, Fenwick A, Ray SE, Hay SI, Molyneux DH. “Rapid impact” 10 years after: The first “decade” (2006-2016) of integrated neglected tropical disease control. PLoS Neglected Trop Dis. 2018;12(5):e0006137.  https://doi.org/10.1371/journal.pntd.0006137 (PubMed PMID: 29795551; PMCID: PMC5967703).CrossRefGoogle Scholar
  5. 5.
    Nkumama IN, O’Meara WP, Osier FHA. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 2017;33(2):128–40.  https://doi.org/10.1016/j.pt.2016.11.006 (PubMed PMID: 27939610).CrossRefPubMedGoogle Scholar
  6. 6.
    Hotez PJ, Herricks JR. Helminth elimination in the pursuit of sustainable development goals: a “worm index” for human development. PLoS Neglected Trop Dis. 2015;9(4):e0003618.  https://doi.org/10.1371/journal.pntd.0003618 (PubMed PMID: 25928617; PMCID: PMC4415765).CrossRefGoogle Scholar
  7. 7.
    Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.  https://doi.org/10.1016/S0140-6736(17)32154-2 (PubMed PMID: 28919117; PMCID: PMC5605509).CrossRefGoogle Scholar
  8. 8.
    Institute_for_Health_Metrics_and_Evaluation. Global Health Data Exchange 2013. Available from: http://ghdx.healthdata.org/gbd-data-tool.
  9. 9.
    Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich Sachs S, Sachs JD. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med. 2006;3(5):e102.  https://doi.org/10.1371/journal.pmed.0030102 (PubMed PMID: 16435908; PMCID: 1351920).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brooker S, Clements AC, Hotez PJ, Hay SI, Tatem AJ, Bundy DA, Snow RW. The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malaria J. 2006;5:99.  https://doi.org/10.1186/1475-2875-5-99 (PubMed PMID: 17083720; PMCID: 1635726).CrossRefGoogle Scholar
  11. 11.
    Hotez PJ, Mistry N, Rubinstein J, Sachs JD. Integrating neglected tropical diseases into AIDS, tuberculosis, and malaria control. New Engl J Med. 2011;364(22):2086–9.  https://doi.org/10.1056/NEJMp1014637 (PubMed PMID: 21631320).CrossRefPubMedGoogle Scholar
  12. 12.
    Greenwood B. Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malaria J. 2010;9(Suppl 3):S2.  https://doi.org/10.1186/1475-2875-9-S3-S2 (PubMed PMID: 21144082; PMCID: PMC3002144).CrossRefGoogle Scholar
  13. 13.
    Opoku EC, Olsen A, Browne E, Hodgson A, Awoonor-Williams JK, Yelifari L, Williams J, Magnussen P. Impact of combined intermittent preventive treatment of malaria and helminths on anaemia, sustained attention, and recall in Northern Ghanaian schoolchildren. Glob Health Action. 2016;9:32197.  https://doi.org/10.3402/gha.v9.32197 (PubMed PMID: 27633035; PMCID: PMC5025525).CrossRefPubMedGoogle Scholar
  14. 14.
    Kelly-Hope LA, Molyneux DH, Bockarie MJ. Can malaria vector control accelerate the interruption of lymphatic filariasis transmission in Africa; capturing a window of opportunity? Parasites Vectors. 2013;6:39.  https://doi.org/10.1186/1756-3305-6-39 (PubMed PMID: 23433078; PMCID: PMC3599698).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Snow RW, Craig M, Deichmann U, Marsh K. Estimating mortality, morbidity and disability due to malaria among Africa’s non-pregnant population. Bull World Health Organ. 1999;77(8):624–40 (PubMed PMID: 10516785; PMCID: PMC2557714).PubMedPubMedCentralGoogle Scholar
  16. 16.
    Robert V, Macintyre K, Keating J, Trape JF, Duchemin JB, Warren M, Beier JC. Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg. 2003;68(2):169–76 (PubMed PMID: 12641407).CrossRefGoogle Scholar
  17. 17.
    Ndeffo Mbah ML, Skrip L, Greenhalgh S, Hotez P, Galvani AP. Impact of Schistosoma mansoni on malaria transmission in Sub-Saharan Africa. PLoS Neglected Trop Dis. 2014;8(10):e3234.  https://doi.org/10.1371/journal.pntd.0003234 (PubMed PMID: 25329403; PMCID: 4199517).CrossRefGoogle Scholar
  18. 18.
    Brooker S, Akhwale W, Pullan R, Estambale B, Clarke SE, Snow RW, Hotez PJ. Epidemiology of plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg. 2007;77(6 Suppl):88–98 (PubMed PMID: 18165479; PMCID: 2637949).CrossRefGoogle Scholar
  19. 19.
    Hotez PJ, Molyneux DH. Tropical anemia: one of Africa’s great killers and a rationale for linking malaria and neglected tropical disease control to achieve a common goal. PLoS Neglected Trop Dis. 2008;2(7):e270.  https://doi.org/10.1371/journal.pntd.0000270 (PubMed PMID: 18665256; PMCID: 2474697).CrossRefGoogle Scholar
  20. 20.
    Matangila JR, Doua JY, Linsuke S, Madinga J, Inocencio da Luz R, Van Geertruyden JP, Lutumba P. Malaria, schistosomiasis and soil transmitted helminth burden and their correlation with anemia in children attending primary schools in Kinshasa, Democratic Republic of Congo. PloS One. 2014;9(11):e110789.  https://doi.org/10.1371/journal.pone.0110789 (PubMed PMID: 25372029; PMCID: PMC4220949).CrossRefGoogle Scholar
  21. 21.
    Njunda AL, Fon SG, Assob JC, Nsagha DS, Kwenti TD, Kwenti TE. Coinfection with malaria and intestinal parasites, and its association with anaemia in children in Cameroon. Infect Dis Poverty. 2015;4:43.  https://doi.org/10.1186/s40249-015-0078-5 (PubMed PMID: 26445484; PMCID: PMC4595138).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zeukeng F, Tchinda VH, Bigoga JD, Seumen CH, Ndzi ES, Abonweh G, Makoge V, Motsebo A, Moyou RS. Co-infections of malaria and geohelminthiasis in two rural communities of Nkassomo and Vian in the Mfou health district, Cameroon. PLoS Neglected Trop Dis. 2014;8(10):e3236.  https://doi.org/10.1371/journal.pntd.0003236 (PubMed PMID: 25329479; PMCID: PMC4199518).CrossRefGoogle Scholar
  23. 23.
    Fleming AF. Agriculture-related anaemias. Br J Biomed Sci. 1994;51(4):345–57 (PubMed PMID: 7756942).PubMedGoogle Scholar
  24. 24.
    DALYs GBD, Collaborators H. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1260–344.  https://doi.org/10.1016/s0140-6736(17)32130-x (PubMed PMID: 28919118; PMCID: PMC5605707).CrossRefGoogle Scholar
  25. 25.
    Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, Regan M, Weatherall D, Chou DP, Eisele TP, Flaxman SR, Pullan RL, Brooker SJ, Murray CJ. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615–24.  https://doi.org/10.1182/blood-2013-06-508325 (PubMed PMID: 24297872; PMCID: PMC3907750).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A. Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat Rev Microbiol. 2010;8(11):814–26.  https://doi.org/10.1038/nrmicro2438 (PubMed PMID: 20948553).CrossRefPubMedGoogle Scholar
  27. 27.
    Hotez PJ, Bethony JM, Oliveira SC, Brindley PJ, Loukas A. Multivalent anthelminthic vaccine to prevent hookworm and schistosomiasis. Expert Rev Vaccines. 2008;7(6):745–52.  https://doi.org/10.1586/14760584.7.6.745 (PubMed PMID: 18665774).CrossRefPubMedGoogle Scholar
  28. 28.
    Hotez PJ, Van Leeuwen R. Vaccinating against iron-deficiency anemia: a new technology for maternal and child health 2015. Available from: https://www.healthaffairs.org/do/10.1377/hblog20150219.044524/full/.
  29. 29.
    Chauhan VS. Development & licensing of first ever vaccine against malaria. Indian J Med Res. 2015;142(6):637–9.  https://doi.org/10.4103/0971-5916.174535 (PubMed PMID: 26831410; PMCID: PMC4774058).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jongo SA, Shekalaghe SA, Church LWP, Ruben AJ, Schindler T, Zenklusen I, Rutishauser T, Rothen J, Tumbo A, Mkindi C, Mpina M, Mtoro AT, Ishizuka AS, Kassim KR, Milando FA, Qassim M, Juma OA, Mwakasungula S, Simon B, James ER, Abebe Y, Kc N, Chakravarty S, Saverino E, Bakari BM, Billingsley PF, Seder RA, Daubenberger C, Sim BKL, Richie TL, Tanner M, Abdulla S, Hoffman SL. Safety, immunogenicity, and protective efficacy against controlled human malaria infection of Plasmodium falciparum sporozoite vaccine in tanzanian adults. Am J Trop Med Hyg. 2018;99(2):338–49.  https://doi.org/10.4269/ajtmh.17-1014 (PubMed PMID: 29943719).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A. From the circumsporozoite protein to the RTS. S/AS candidate vaccine. Human vaccines. 2010;6(1):90–6 (PubMed PMID: 19806009).PubMedGoogle Scholar
  32. 32.
    Chaudhury S, Regules JA, Darko CA, Dutta S, Wallqvist A, Waters NC, Jongert E, Lemiale F, Bergmann-Leitner ES. Delayed fractional dose regimen of the RTS, S/AS01 malaria vaccine candidate enhances an IgG4 response that inhibits serum opsonophagocytosis. Sci Rep. 2017;7(1):7998.  https://doi.org/10.1038/s41598-017-08526-5 (PubMed PMID: 28801554; PMCID: PMC5554171).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Witte D, Cunliffe NA, Turner AM, Ngulube E, Ofori-Anyinam O, Vekemans J, Chimpeni P, Lievens M, Wilson TP, Njiram’madzi J, Mendoza YG, Leach A. Safety and immunogenicity of seven dosing regimens of the candidate RTS, S/AS01E malaria vaccine integrated within an expanded program on immunization regimen: a phase II, single-center, open, controlled trial in infants in Malawi. Pediatr Infect Dis J. 2018;37(5):483–91.  https://doi.org/10.1097/INF.0000000000001937 (PubMed PMID: 29432383).CrossRefPubMedGoogle Scholar
  34. 34.
    Loukas A, Bethony J, Brooker S, Hotez P. Hookworm vaccines: past, present, and future. Lancet Infect Dis. 2006;6(11):733–41.  https://doi.org/10.1016/S1473-3099(06)70630-2 (PubMed PMID: 17067922).CrossRefPubMedGoogle Scholar
  35. 35.
    Goud GN, Bottazzi ME, Zhan B, Mendez S, Deumic V, Plieskatt J, Liu S, Wang Y, Bueno L, Fujiwara R, Samuel A, Ahn SY, Solanki M, Asojo OA, Wang J, Bethony JM, Loukas A, Roy M, Hotez PJ. Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Vaccine. 2005;23(39):4754–64.  https://doi.org/10.1016/j.vaccine.2005.04.040 (PubMed PMID: 16054275).CrossRefPubMedGoogle Scholar
  36. 36.
    Bethony JM, Simon G, Diemert DJ, Parenti D, Desrosiers A, Schuck S, Fujiwara R, Santiago H, Hotez PJ. Randomized, placebo-controlled, double-blind trial of the Na-ASP-2 hookworm vaccine in unexposed adults. Vaccine. 2008;26(19):2408–17.  https://doi.org/10.1016/j.vaccine.2008.02.049 (PubMed PMID: 18396361).CrossRefPubMedGoogle Scholar
  37. 37.
    Diemert DJ, Pinto AG, Freire J, Jariwala A, Santiago H, Hamilton RG, Periago MV, Loukas A, Tribolet L, Mulvenna J, Correa-Oliveira R, Hotez PJ, Bethony JM. Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: implications for the development of vaccines against helminths. J Allergy Clin Immunol. 2012;130(1):169–76 e6.  https://doi.org/10.1016/j.jaci.2012.04.027 (PubMed PMID: 22633322).CrossRefGoogle Scholar
  38. 38.
    Ranjit N, Zhan B, Hamilton B, Stenzel D, Lowther J, Pearson M, Gorman J, Hotez P, Loukas A. Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. J Infect Dis. 2009;199(6):904–12 (PubMed PMID: 19434933).CrossRefGoogle Scholar
  39. 39.
    Goud GN, Deumic V, Gupta R, Brelsford J, Zhan B, Gillespie P, Plieskatt JL, Tsao EI, Hotez PJ, Bottazzi ME. Expression, purification, and molecular analysis of the Necator americanus glutathione S-transferase 1 (Na-GST-1): a production process developed for a lead candidate recombinant hookworm vaccine antigen. Protein Expr Purif. 2012;83(2):145–51.  https://doi.org/10.1016/j.pep.2012.03.013 (PubMed PMID: 22503665).CrossRefPubMedGoogle Scholar
  40. 40.
    Curti E, Seid CA, Hudspeth E, Center L, Rezende W, Pollet J, Kwityn C, Hammond M, Matsunami RK, Engler DA, Hotez PJ, Elena Bottazzi M. Optimization and revision of the production process of the Necator americanus glutathione S-transferase 1 (Na-GST-1), the lead hookworm vaccine recombinant protein candidate. Human Vaccines Immunotherapeutics. 2014;10(7):1914–25.  https://doi.org/10.4161/hv.28872 (PubMed PMID: 25424799; PMCID: PMC4186034).CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Seid CA, Curti E, Jones RM, Hudspeth E, Rezende W, Pollet J, Center L, Versteeg L, Pritchard S, Musiychuk K, Yusibov V, Hotez PJ, Bottazzi ME. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-APR-1 (M74)) antigen, a component of the bivalent human hookworm vaccine. Human Vaccines Immunotherapeutics. 2015;11(6):1474–88.  https://doi.org/10.1080/21645515.2015.1036207 (PubMed PMID: 25905574; PMCID: PMC4514214).CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hotez PJ, Strych U, Lustigman S, Bottazzi ME. Human anthelminthic vaccines: rationale and challenges. Vaccine. 2016;34(30):3549–55.  https://doi.org/10.1016/j.vaccine.2016.03.112 (PubMed PMID: 27171753).CrossRefPubMedGoogle Scholar
  43. 43.
    Diemert DJ, Freire J, Valente V, Fraga CG, Talles F, Grahek S, Campbell D, Jariwala A, Periago MV, Enk M, Gazzinelli MF, Bottazzi ME, Hamilton R, Brelsford J, Yakovleva A, Li G, Peng J, Correa-Oliveira R, Hotez P, Bethony J. Safety and immunogenicity of the Na-GST-1 hookworm vaccine in Brazilian and American adults. PLoS Neglected Trop Dis. 2017;11(5):e0005574.  https://doi.org/10.1371/journal.pntd.0005574 (PubMed PMID: 28464026; PMCID: PMC5441635).CrossRefGoogle Scholar
  44. 44.
    Bartsch SM, Hotez PJ, Hertenstein DL, Diemert DJ, Zapf KM, Bottazzi ME, Bethony JM, Brown ST, Lee BY. Modeling the economic and epidemiologic impact of hookworm vaccine and mass drug administration (MDA) in Brazil, a high transmission setting. Vaccine. 2016;34(19):2197–206.  https://doi.org/10.1016/j.vaccine.2016.03.018 (PubMed PMID: 27002501).CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Diemert DJ, Bottazzi ME, Plieskatt J, Hotez PJ, Bethony JM. Lessons along the Critical Path: Developing Vaccines against Human Helminths. Trends in parasitology. 2018.  https://doi.org/10.1016/j.pt.2018.07.005 (PubMed PMID: 30064902).CrossRefGoogle Scholar
  46. 46.
    HOOKVAC. The human hookworm vaccine 2018 [8/20/2018]. Available from: http://hookvac.eu/project/.
  47. 47.
    Tran MH, Freitas TC, Cooper L, Gaze S, Gatton ML, Jones MK, Lovas E, Pearce EJ, Loukas A. Suppression of mRNAs encoding tegument tetraspanins from Schistosoma mansoni results in impaired tegument turnover. PLoS Pathog. 2010;6(4):e1000840.  https://doi.org/10.1371/journal.ppat.1000840 (PubMed PMID: 20419145; PMCID: 2855321).CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, Duke M, Don TA, McManus DP, Correa-Oliveira R, Loukas A. Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat Med. 2006;12(7):835–40.  https://doi.org/10.1038/nm1430 (PubMed PMID: 16783371).CrossRefPubMedGoogle Scholar
  49. 49.
    Cheng W, Curti E, Rezende WC, Kwityn C, Zhan B, Gillespie P, Plieskatt J, Joshi SB, Volkin DB, Hotez PJ, Middaugh CR, Bottazzi ME. Biophysical and formulation studies of the Schistosoma mansoni TSP-2 extracellular domain recombinant protein, a lead vaccine candidate antigen for intestinal schistosomiasis. Human vaccines Immunotherapeutics. 2013;9(11):2351–61 (PubMed PMID: 23880663; PMCID: PMC3981844).CrossRefGoogle Scholar
  50. 50.
    Curti E, Kwityn C, Zhan B, Gillespie P, Brelsford J, Deumic V, Plieskatt J, Rezende WC, Tsao E, Kalampanayil B, Hotez PJ, Bottazzi ME. Expression at a 20L scale and purification of the extracellular domain of the Schistosoma mansoni TSP-2 recombinant protein: a vaccine candidate for human intestinal schistosomiasis. Human Vaccines Immunotherapeutics. 2013;9(11):2342–50 (PubMed PMID: 23899507; PMCID: PMC3981843).Google Scholar
  51. 51.
    Siddiqui AA, Siddiqui SZ. Sm-p80-Based Schistosomiasis Vaccine: Preparation for Human Clinical Trials. Trends Parasitol. 2017;33(3):194–201.  https://doi.org/10.1016/j.pt.2016.10.010 (PubMed PMID: 27865740; PMCID: PMC5328854).CrossRefPubMedGoogle Scholar
  52. 52.
    Siddiqui AJ, Molehin AJ, Zhang W, Ganapathy PK, Kim E, Rojo JU, Redman WK, Sennoune SR, Sudduth J, Freeborn J, Hunter D, Kottapalli KR, Kottapalli P, Wettashinghe R, van Dam GJ, Corstjens P, Papin JF, Carey D, Torben W, Ahmad G, Siddiqui AA. Sm-p 80-based vaccine trial in baboons: efficacy when mimicking natural conditions of chronic disease, praziquantel therapy, immunization, and Schistosoma mansoni re-encounter. Ann New York Acad Sci. 2018.  https://doi.org/10.1111/nyas.13866 (PubMed PMID: 29888790).CrossRefGoogle Scholar
  53. 53.
    Georgieff MK. Iron assessment to protect the developing brain. Am J Clin Nutr. 2017;106(Suppl 6):1588S–93S.  https://doi.org/10.3945/ajcn.117.155846 (PubMed PMID: 29070550; PMCID: PMC5701704).CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    WHO. Malaria in children under five 2018 [08/17/2018]. Available from: http://www.who.int/malaria/areas/high_risk_groups/children/en/.
  55. 55.
    Blouin B, Casapia M, Joseph L, Gyorkos TW. A longitudinal cohort study of soil-transmitted helminth infections during the second year of life and associations with reduced long-term cognitive and verbal abilities. PLoS Neglected Trop Dis. 2018;12(7):e0006688.  https://doi.org/10.1371/journal.pntd.0006688 (PubMed PMID: 30052640).CrossRefGoogle Scholar
  56. 56.
    Lo NC, Snyder J, Addiss DG, Heft-Neal S, Andrews JR, Bendavid E. Deworming in pre-school age children: a global empirical analysis of health outcomes. PLoS Neglected Trop Dis. 2018;12(5):e0006500.  https://doi.org/10.1371/journal.pntd.0006500 (PubMed PMID: 29852012; PMCID: PMC5997348, which is an organization that promotes prevention and treatment of soil-transmitted helminthiasis. The remaining authors declare no conflicts of interest).CrossRefGoogle Scholar
  57. 57.
    Sun D, McLeod A, Gandhi S, Malinowski AK, Shehata N. Anemia in pregnancy: a pragmatic approach. Obstet Gynecol Surv. 2017;72(12):730–7.  https://doi.org/10.1097/OGX.0000000000000510 (PubMed PMID: 29280474).CrossRefPubMedGoogle Scholar
  58. 58.
    Brooker S, Hotez PJ, Bundy DA. Hookworm-related anaemia among pregnant women: a systematic review. PLoS Neglected Trop Dis. 2008;2(9):e291.  https://doi.org/10.1371/journal.pntd.0000291 (PubMed PMID: 18820740; PMCID: 2553481).CrossRefGoogle Scholar
  59. 59.
    Ajanga A, Lwambo NJ, Blair L, Nyandindi U, Fenwick A, Brooker S. Schistosoma mansoni in pregnancy and associations with anaemia in northwest Tanzania. Trans R Soc Trop Med Hyg. 2006;100(1):59–63.  https://doi.org/10.1016/j.trstmh.2005.06.024 (PubMed PMID: 16219330).CrossRefPubMedGoogle Scholar
  60. 60.
    Tay SC, Nani EA, Walana W. Parasitic infections and maternal anaemia among expectant mothers in the Dangme East District of Ghana. BMC Res Notes. 2017;10(1):3.  https://doi.org/10.1186/s13104-016-2327-5 (PubMed PMID: 28057071; PMCID: PMC5217638).CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Christian P, Khatry SK, West KP Jr. Antenatal anthelmintic treatment, birthweight, and infant survival in rural Nepal. Lancet. 2004;364(9438):981–3.  https://doi.org/10.1016/S0140-6736(04)17023-2 (PubMed PMID: 15364190).CrossRefPubMedGoogle Scholar
  62. 62.
    Skoff TH, Blain AE, Watt J, Scherzinger K, McMahon M, Zansky SM, Kudish K, Cieslak PR, Lewis M, Shang N, Martin SW. Impact of the US maternal tetanus, diphtheria, and acellular pertussis vaccination program on preventing pertussis in infants <2 months of age: a case-control evaluation. Clin Infect Dis: Official Publ Infect Dis Soc Am. 2017;65(12):1977–83.  https://doi.org/10.1093/cid/cix724 (PubMed PMID: 29028938; PMCID: PMC5754921).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peter J. Hotez
    • 1
    • 2
    Email author
  • Ulrich Strych
    • 1
  • Maria Elena Bottazzi
    • 1
    • 2
  1. 1.Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of MedicineHoustonUSA
  2. 2.Department of BiologyBaylor UniversityWacoUSA

Personalised recommendations