Advertisement

The Chloroplast and Photosynthetic Eukaryotes

  • Roberto Ligrone
Chapter

Abstract

The chloroplast primarily evolved in the unicellular ancestor of Archaeplastida (Plants) from a cyanobacterial endosymbiont around 900 MYA. A secondary chloroplast independently evolved in the Chlorarachniophytes (Rhizaria) and Euglenophytes (Excavata) from two different green algal endosymbionts, and in the “chromoalveolate” lineage from a red algal endosymbiont. It is debated whether the chromoalveolate chloroplast was transmitted vertically across the Cryptophytes, Haptophytes, Chromista and Alveolata as the chromoalveolate hypothesis maintains, or by serial symbiosis. Chloroplast evolution involved massive gene transfer from the cyanobacterial endosymbiont to the host nucleus; a minor part of the original genome remained in the chloroplast and was never completely lost. Protein translocation from the host cytosol to different sites of the chloroplast depends on multiple translocation mechanisms derived in part from the host, in part of cyanobacterial ancestry. The evolution of secondary chloroplasts involved the transfer of genes for chloroplast maintenance from the nucleus of the primary host to that of the secondary host; mechanisms derived from the secondary-host endomembrane system mediate protein translocation across extra envelope membranes of secondary chloroplasts. Chloroplast division involves a divisome complex in part of cyanobacterial origin, in part eukaryotic. Photosynthetic eukaryotes replaced ancestral glycogen with starch, accumulated either in the host cytosol or in chloroplast stroma, or with β-glucans in cytoplasmic vesicles. Multiple chloroplast transfer is a common occurrence in eukaryotes. A novel primary chloroplast independently evolved in the cercozoan amoeba Paulinella chromatophora. By transferring photosynthesis from the prokaryotic to eukaryotic world, chloroplast evolution dramatically increased global productivity, thus probably being a major driver of the Late-Proterozoic transition from a low- to high-oxygen planet.

References

  1. Adl SM et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493.  https://doi.org/10.1111/j.1550-7408.2012.00644.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen JF (2015) Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 112:10231–10238PubMedPubMedCentralCrossRefGoogle Scholar
  3. Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A 112:10147–10153PubMedPubMedCentralCrossRefGoogle Scholar
  4. Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bachvaroff TR et al (2011) Alveolate phylogeny inferred using concatenated ribosomal proteins. J Eukaryot Microbiol 58:223–233PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ball S et al (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ball SG et al (2013) Metabolic effectors secreted by bacterial pathogens; essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  9. Barbrook AC et al (2010) Organization and expression of organellar genomes. Philos Trans R Soc, B 365:785–797CrossRefGoogle Scholar
  10. Basak I, Møller SG (2013) Emerging facets of plastid division regulation. Planta 237:389–398PubMedCrossRefPubMedCentralGoogle Scholar
  11. Baurain D et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709PubMedCrossRefPubMedCentralGoogle Scholar
  12. Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhattacharya D et al (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. BioEssays 29:1239–1246PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bodył A (2018) Did some red alga-derived plastids evolve kleptoplastidy? A hypothesis. Biol Rev 93(1):201–222Google Scholar
  15. Bodył A, Mackiewicz P, Stiller JW (2009a) Early steps in plastid evolution: current ideas and controversies. BioEssays 31:1219–1232PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bodył A, Stiller JW, Mackiewicz P (2009b) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brawley SH et al (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci USA 114:E6361–E6370. www.pnas.org/cgi/doi/10.1073/pnas.1703088114 PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brown MW et al (2018) Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol 10:427–433PubMedPubMedCentralCrossRefGoogle Scholar
  19. Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbor Perspect Biol 6:a016147.  https://doi.org/10.1101/cshperspect.a016147 CrossRefGoogle Scholar
  20. Burki F et al (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc R Soc B 279:2246–2254PubMedCrossRefPubMedCentralGoogle Scholar
  21. Burki F et al (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802.  https://doi.org/10.1098/rspb.2015.2802 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote–eukaryote chimaeras (meta-algae). Philos Trans R Soc, B 358:109–134CrossRefGoogle Scholar
  24. Cavalier-Smith T, Chao EEY (2004) Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.). Eur J Protistol 40:185–212CrossRefGoogle Scholar
  25. Cavalier-Smith T, Chao EEY, Lewis R (2015) Multiple origins of Heliozoa from flagellate ancestors: new cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol Phylogenet Evol 93:331–362PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chan CX et al (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:338–333CrossRefGoogle Scholar
  27. Chen C et al (2018) The molecular machinery of chloroplast division. Plant Physiol 176:138–151PubMedCrossRefPubMedCentralGoogle Scholar
  28. Colleoni C, Linka M, Deschamps P, Handford MG, Dupree P, Weber APM, Ball SG (2010) Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol Biol Evol 27(12):2691–2701PubMedCrossRefPubMedCentralGoogle Scholar
  29. Coppin A et al (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267PubMedCrossRefPubMedCentralGoogle Scholar
  30. Curtis BA et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dagan T et al (2013) Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 5:31–44PubMedCrossRefPubMedCentralGoogle Scholar
  32. De Vries J et al (2014) Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci 21:467–476CrossRefGoogle Scholar
  33. Derelle M et al (2015) Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A 112:E693–E699.  https://doi.org/10.1073/pnas.1420657112 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Deschamps P et al (2008a) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548PubMedCrossRefGoogle Scholar
  35. Deschamps P et al (2008b) The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci 13:574–582PubMedCrossRefGoogle Scholar
  36. Deschamps P et al (2008c) The heterotrophic dinoflagellate Crypthecodinium cohnii defines a model genetic system to investigate cytoplasmic starch synthesis. Eukaryotic Cell 7:872–880PubMedPubMedCentralCrossRefGoogle Scholar
  37. Deusch O et al (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761PubMedCrossRefGoogle Scholar
  38. Dorrell RG, Howe CJ (2012) What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 125:1865–1875PubMedCrossRefGoogle Scholar
  39. Dorrell RG, Howe CJ (2015) Integration of plastids with their hosts: lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 112:10247–10254PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dorrell RG, Smith AG (2011) Do red and green make brown? Perspectives on plastid acquisitions within chromalveolates. Eukaryotic Cell 10:856–868PubMedPubMedCentralCrossRefGoogle Scholar
  41. Douglas AE (2014) Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harbor Perspect Biol 6:a016113CrossRefGoogle Scholar
  42. Douzery EJP et al (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? PNAS 101:15386–15391CrossRefGoogle Scholar
  43. Ewing A et al (2014) 16S and 23S plastid RNA phylogenies of Prototheca species and their auxanographic phenotypes. J Phycol 50:765–769PubMedPubMedCentralCrossRefGoogle Scholar
  44. Feulner G, Hallmann C, Kienert H (2015) Snowball cooling after algal rise. Nat Geosci 8:659–662CrossRefGoogle Scholar
  45. Geider RJ et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882CrossRefGoogle Scholar
  46. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517PubMedCrossRefGoogle Scholar
  47. Gould SB, Maier U-G, Martin WF (2015) Protein import and the origin of red complex plastids. Curr Biol 25:R515–R521.  https://doi.org/10.1016/j.cub.2015.04.033 CrossRefPubMedGoogle Scholar
  48. Hirano T et al (2016) Moss chloroplasts are surrounded by a peptidoglycan wall containing D-amino acids. Plant Cell 28:1521–1532PubMedPubMedCentralGoogle Scholar
  49. Howe CJ et al (2008) The origin of chloroplasts. Philos Trans R Soc, B 363:2675–2685CrossRefGoogle Scholar
  50. Huang JL, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99.  https://doi.org/10.1186/gb-2007-8-6-r99 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76PubMedCrossRefGoogle Scholar
  52. Huber H et al (2012) The unusual cell biology of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. Antonie Van Leeuwenhoek 102:203–219PubMedCrossRefGoogle Scholar
  53. Husnik F et al (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:1567–1578PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jackson C, Clayden S, Reyes-Prieto A (2015) The Glaucophyta: the blue-green plants in a nutshell. Acta Soc Bot Pol 84:149–165CrossRefGoogle Scholar
  55. Janouškovec J et al (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–285PubMedCrossRefPubMedCentralGoogle Scholar
  57. Karkar S et al (2015) Metabolic connectivity as a driver of host and endosymbiont integration. Proc Natl Acad Sci U S A 112:10208–10215PubMedPubMedCentralCrossRefGoogle Scholar
  58. Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8PubMedCrossRefGoogle Scholar
  59. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc, B 365:729–748CrossRefGoogle Scholar
  60. Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607PubMedCrossRefGoogle Scholar
  61. Keeling PJ, McCutcheon JP, Doolittle WF (2015) Symbiosis becoming permanent: survival of the luckiest. Proc Natl Acad Sci U S A 112:10101–10103PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim E, Archibald JM (2010) Plastid evolution: gene transfer and the maintenance of ‘stolen’ organelles. BMC Biol 8:73. http://www.biomedcentral.com/1741-7007/8/73 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kim E, Graham LE (2008) EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. PLoS One 3:e2621.  https://doi.org/10.1371/journal.pone.0002621 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kugrens P, Clay BL, Meyer CJ (1999) Ultrastructure and description of Cyanophora biloba, sp. nov, with additional observations on C. paradoxa (Glaucophyta). J Phycol 35:844–854CrossRefGoogle Scholar
  65. Leliaert F, Verbruggen H, Zechman FW (2011) Into the deep: new discoveries at the base of the green plant phylogeny. BioEssays 33:683–692PubMedCrossRefPubMedCentralGoogle Scholar
  66. Leliaert F et al (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46CrossRefGoogle Scholar
  67. Li B et al (2014) Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Mol Biol Evol 31:1697–1709PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc, B 365:749–763CrossRefGoogle Scholar
  69. Mackiewicz P, Gagat P (2014) Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Soc Bot Pol 83:263–280CrossRefGoogle Scholar
  70. Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432PubMedCrossRefPubMedCentralGoogle Scholar
  71. McCutcheon JP, von Dohlen CD (2011) An interdependent metabolic patchwork in the nested three-way symbiosis of mealybugs. Curr Biol 21:1366–1372PubMedPubMedCentralCrossRefGoogle Scholar
  72. McFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harbor Perspect Biol 6:a016105CrossRefGoogle Scholar
  73. McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516.  https://doi.org/10.1016/j.cub.2004.06.041 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Michel G et al (2010) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol 188:67–81.  https://doi.org/10.1111/j.1469-8137.2010.03345.x CrossRefPubMedPubMedCentralGoogle Scholar
  75. Myklestad SM, Granum E (2009) Biology of (1,3)-β-glucans and related glucans in protozoans and chromistans. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1,3)-β-glucans and related polysaccharides. Academic, London, pp 353–385Google Scholar
  76. Nobles DR, Brown RM (2004) The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose 11:437–448CrossRefGoogle Scholar
  77. Nowack ECM (2014) Paulinella chromatophora – rethinking the transition from endosymbiont to organelle. Acta Soc Bot Pol 83:387–397CrossRefGoogle Scholar
  78. Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc, B 365:699–712CrossRefGoogle Scholar
  79. Obornìk M, Lukeš J (2013) Cell biology of chromerids: autotrophic relatives to apicomplexan parasites. Int Rev Cell Mol Biol 306:333–369.  https://doi.org/10.1016/B978-0-12-407694-5.00008-0 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Obornìk M et al (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of Apicomplexa, Chromera velia. Protist 162:115–130PubMedCrossRefPubMedCentralGoogle Scholar
  81. Okamoto N, Inouye I (2006) Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157:401–419PubMedCrossRefPubMedCentralGoogle Scholar
  82. Onuma R, Mishra N, Miyagishima SY (2017) Regulation of chloroplast and nucleomorph replication by the cell cycle in the cryptophyte Guillardia theta. Sci Rep 7:2345.  https://doi.org/10.1038/s41598-017-02668-2 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Osteryoung KW, Pyke KA (2014) Division and dynamic morphology of plastids. Annu Rev Plant Biol 65:443–472PubMedCrossRefPubMedCentralGoogle Scholar
  84. Parfrey LW et al (2010) Broadly sampled multigene analyses yield a well resolved eukaryotic tree of life. Syst Biol 59:518–533PubMedPubMedCentralCrossRefGoogle Scholar
  85. Parfrey LW et al (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629PubMedPubMedCentralCrossRefGoogle Scholar
  86. Park MG, Kim M, Kim S (2014) The acquisition of plastids/phototrophy in heterotrophic dinoflagellates. Acta Protozool 53:39–50Google Scholar
  87. Patron NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41:1131–1141CrossRefGoogle Scholar
  88. Pierce SK, Curtis NE, Schwartz JA (2009) Chlorophyll a synthesis by an animal using transferred algal nuclear genes. Symbiosis 49:121–131CrossRefGoogle Scholar
  89. Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65:1955–1972PubMedCrossRefPubMedCentralGoogle Scholar
  90. Qiu D, Huanga L, Linb S (2016) Cryptophyte farming by symbiotic ciliate host detected in situ. Proc Natl Acad Sci U S A 113:12208–12213PubMedPubMedCentralCrossRefGoogle Scholar
  91. Reeb VC et al (2009) Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Mol Phylogenet Evol 53:202–211PubMedCrossRefPubMedCentralGoogle Scholar
  92. Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Mol Phylogenet Evol 45:384–391PubMedCrossRefPubMedCentralGoogle Scholar
  93. Reyes-Prieto A, Moustafa A, Bhattacharya D (2008) Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 18:956–962PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31.  https://doi.org/10.1186/1741-7007-4-31 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Rodríguez-Ezpeleta N et al (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330PubMedCrossRefPubMedCentralGoogle Scholar
  96. Rogers MB et al (2007) The complete chloroplast genome of the Chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio 7:e01395–e01315.  https://doi.org/10.1128/mBio.01395-15 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Rowlett VW, Margolin W (2015) The bacterial divisome: ready for its close-up. Philos Trans R Soc, B 370:20150028.  https://doi.org/10.1098/rstb.2015.0028 CrossRefGoogle Scholar
  99. Sanchez-Puerta MV, Delwiche CF (2008) A hypothesis for plastid evolution in chromoalveolates. J Phycol 44:1097–1107PubMedCrossRefPubMedCentralGoogle Scholar
  100. Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF (2007) Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol 44:885–897PubMedCrossRefPubMedCentralGoogle Scholar
  101. Serôdio J et al (2014) Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells. Philos Trans R Soc, B 369:20130242.  https://doi.org/10.1098/rstb.2013.0242 CrossRefGoogle Scholar
  102. Shaw J et al (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefPubMedCentralGoogle Scholar
  103. Shih PM, Matzkeb NJ (2013) Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A 110:12355–12360PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shimonaga T et al (2007) Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol 9:192–202PubMedCrossRefPubMedCentralGoogle Scholar
  105. Silar P (2016) Protistes eucaryotes: origine, evolution et biologie des microbes eucaryotes. https://hal.archives-ouvertes.fr/hal-01263138
  106. Simpson AGB, Slamovits CH, Archibald JM (2017) Protist diversity and eukaryote phylogeny. In: Archibald JM et al (eds) Handbook of the protists. Springer International Publishing AG, ChamGoogle Scholar
  107. Slamovits CH, Keeling PJ (2008) Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306PubMedCrossRefPubMedCentralGoogle Scholar
  108. Stiller JW et al (2009) Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484.  https://doi.org/10.1186/1471-2164-10-484 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Stiller JW et al (2014) The evolution of photosynthesis in chromist algae through serial endosymbiosis. Nat Commun 5:5764.  https://doi.org/10.1038/ncomms6764 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Stone BA (2009) Chemistry of β-glucans. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1,3)-β-glucans and related polysaccharides. Academic, London, pp 5–46Google Scholar
  111. Suzuki K, Miyagishima S (2009) Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol 27:581–590PubMedCrossRefPubMedCentralGoogle Scholar
  112. Takahashi T et al (2015) Ultra-high voltage electron microscopy of primitive algae illuminates 3D ultrastructures of the first photosynthetic eukaryote. Sci Rep 5:14735.  https://doi.org/10.1038/srep14735 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Teugels B et al (2008) Kleptoplasts mediate nitrogen acquisition in the sea slug Elysia viridis. Aquat Biol 4:15–21CrossRefGoogle Scholar
  114. Toro E, Shapiro L (2010) Bacterial chromosome organization and segregation. Cold Spring Harbor Perspect Biol 2:a000349.  https://doi.org/10.1101/cshperspect.a000349 CrossRefGoogle Scholar
  115. Tyra HM et al (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212.  https://doi.org/10.1186/gb-2007-8-10-r212 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Weber APM, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in plantae from an endomembrane-derived ancestor. Eukaryotic Cell 5:609–612PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wisecaver JH, Hackett JD (2010) Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics 11:366.  https://doi.org/10.1186/1471-2164-11-366© CrossRefPubMedPubMedCentralGoogle Scholar
  118. Yang Y et al (2008) Plastid division: across time and space. Curr Opin Plant Biol 11:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  119. Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell Environ 31:679–694CrossRefGoogle Scholar
  120. Yoon HS et al (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492CrossRefGoogle Scholar
  121. Yoon HS et al (2009) A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol Biol 9:9.  https://doi.org/10.1186/1471-2148-9-98 CrossRefGoogle Scholar
  122. Zimorski V et al (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ligrone
    • 1
  1. 1.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations