• Roberto Ligrone


Multicellularity evolved many times independently in both bacteria and eukaryotes, but only in the latter did it attain high levels of complexity. Multicellularity dramatically enhanced niche construction and ecosystem complexity. The key factor behind the success of multicellularity is increased fitness from labour division and cellular specialization. Multicellularity required the evolution of mechanisms of cellular communication and differentiation, with frequent instances of convergence across the taxonomic spectrum. Of 119 major eukaryotic clades currently recognized, 83 are exclusively unicellular and 36 encompass multicellular forms; among the latter, six clades evolved forms with a high level of cellular differentiation. Large-sized multicellular organisms evolved vascular systems for long-distance transport. The animals and land plants added internal extracellular compartments subject to homeostatic control. In closed-form multicellular organisms (e.g. the animals and volvocine algae), the body shape is determined during embryo development, after which stem cells control cellular turnover and isometric growth. Open-form organisms (e.g. land plants and fungi) retain totipotent cells that produce new organs throughout life duration. In weismannist organisms (essentially insects, vertebrates and volvocine algae), a germ line precociously separates from the somatic line. Complex multicellular organisms have three hierarchically interlinked levels of organization and three related levels of death, i.e. systemic, organ and cellular.


  1. Alberts B et al (2014) Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  2. Andersson DI, Jerlström-Hultqvist J, Näsvall J (2015) Evolution of new functions de novo and from preexisting genes. Cold Spring Harb Perspect Biol 7. PubMedPubMedCentralCrossRefGoogle Scholar
  3. Armstrong L (2013) Epigenetics. Taylor and Francis, LondonGoogle Scholar
  4. Brown MW et al (2012) Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr Biol 22:1–5PubMedGoogle Scholar
  5. Brown MW et al (2018) Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol 10:427–433PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brunet T, King N (2017) The origin of animal multicellularity and cell differentiation. Dev Cell 43:124–140PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brunkard JO, Zambryski PC (2016) Plasmodesmata enable multicellularity: new insights into their evolution, biogenesis, and functions in development and immunity. Curr Opin Plant Biol 35:76–83PubMedCrossRefGoogle Scholar
  8. Burgert I, Peter Fratz P (2009) Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr Comp Biol 49:69–79PubMedCrossRefGoogle Scholar
  9. Burki F et al (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802. PubMedCrossRefGoogle Scholar
  10. Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:147–175PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cavalier-Smith T (2017) Origin of animal multicellularity: precursors, causes, consequences – the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc B 372:20150476. CrossRefGoogle Scholar
  12. Chang ES et al (2015) Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A 112:14 912–14 917CrossRefGoogle Scholar
  13. Cowman AF et al (2016) Malaria: biology and disease. Cell 167:610–624PubMedCrossRefGoogle Scholar
  14. Deacon J (2006) Fungal biology. Blackwell Publishing, MaldenGoogle Scholar
  15. Diggle SP et al (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414PubMedCrossRefGoogle Scholar
  16. Domozych DS, Domozych CF (2014) Multicellularity in green algae: upsizing in a walled complex. Front Plant Sci 5:1–8CrossRefGoogle Scholar
  17. Fisher RM, Cornwallis CK, West SA (2013) Group formation, relatedness, and the evolution of multicellularity. Curr Biol 23:1120–1125PubMedCrossRefGoogle Scholar
  18. Fujita T (2015) Plasmodesmata: function and diversity in plant intercellular communication. J Plant Res 128:3–5PubMedCrossRefGoogle Scholar
  19. Gerstein AC, Otto SP (2009) Ploidy and the causes of genomic evolution. J Hered 100:571–581PubMedCrossRefGoogle Scholar
  20. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654CrossRefGoogle Scholar
  21. Hamilton WD (1964a) The genetical evolution of social behaviour. Part I. J Theor Biol 7:1–16PubMedCrossRefGoogle Scholar
  22. Hamilton WD (1964b) The genetical evolution of social behaviour. Part II. J Theor Biol 7:17–52PubMedCrossRefGoogle Scholar
  23. Kapsetaki S, Fisher RM, West SA (2016) Predation and the formation of multicellular groups in algae. Evol Ecol Res 17:651–669Google Scholar
  24. Khavari D, Sen G, Rinn J (2010) DNA methylation and epigenetic control of cellular differentiation. Cell Cycle 9:3880–3888PubMedCrossRefGoogle Scholar
  25. Kloepper TH, Kienle CN, Fasshauer D (2008) SNAREing the basis of multicellularity: consequences of protein family expansion during evolution. Mol Biol Evol 25:2055–2068PubMedCrossRefGoogle Scholar
  26. Knoll HA (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239CrossRefGoogle Scholar
  27. Kumar K et al (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315. PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lane N (2014) Bioenergetic constraints on the evolution of complex life. Cold Spring Harb Perspect Biol 6:a015982. PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lane N (2015) The vital question. Why is life the way it is? Profile Books Ltd, LondonGoogle Scholar
  30. Lee RE (2008) Phycology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Lehner J et al (2013) Prokaryotic multicellularity: a nanopore array for bacterial cell communication. FASEB J 27:2293–2300. fj.12-225854PubMedCrossRefGoogle Scholar
  32. Li S et al (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci U S A 109:185–190PubMedCrossRefGoogle Scholar
  33. Libby E, Ratcliff WC (2014) Ratcheting the evolution of multicellularity. Science 346:426–427PubMedCrossRefGoogle Scholar
  34. Lutzoni F et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480PubMedCrossRefGoogle Scholar
  35. McCarthy JV (2003) Apoptosis and development. Essays Biochem 9:11–24CrossRefGoogle Scholar
  36. Nanjundiah V (2016) Cellular slime mold development as a paradigm for the transition from unicellular to multicellular life. In: Niklas KJ, Newman SA (eds) Multicellularity. Origins and evolution. MIT Press, Cambridge, MA, pp 105–130Google Scholar
  37. Niklas KJ (2000) The evolution of plant body plans – a biomechanical perspective. Ann Bot 85:411–438CrossRefGoogle Scholar
  38. Niklas KJ (2014) The evolutionary developmental origins of multicellularity. Am J Bot 101:6–25PubMedCrossRefGoogle Scholar
  39. Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15:41–52PubMedCrossRefGoogle Scholar
  40. Radzvilavicius AL et al (2016) Selection for mitochondrial quality drives evolution of the germline. PLoS Biol 14:e2000410. PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ratcliff WC et al (2013) Experimental evolution of multicellularity. Proc Natl Acad Sci U S A 109:1595–1600CrossRefGoogle Scholar
  42. Raven JA (1997) Miniview: multiple origins of plasmodesmata. Eur J Phycol 32:95–101CrossRefGoogle Scholar
  43. Ruiz-Trillo B et al (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118. PubMedCrossRefGoogle Scholar
  44. Sanderfoot A (2007) Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol 144:6–17PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nature 18:498–512Google Scholar
  46. Szathmàry E, Wolpert L (2003) The transition from single cells to multicellularity. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 285–304Google Scholar
  47. Terauchi M, Nagasato C, Motomu T (2015) Plasmodesmata of brown algae. J Plant Res 128:7–15PubMedCrossRefGoogle Scholar
  48. Umen JG (2014) Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb Perspect Biol 6:a016170PubMedPubMedCentralCrossRefGoogle Scholar
  49. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  50. Wegener Parfrey L, Lahr DJG (2013) Multicellularity arose several times in the evolution of eukaryotes. BioEssays 35:339–347CrossRefGoogle Scholar
  51. West SA et al (2015) Major evolutionary transitions in individuality. Proc Natl Acad Sci U S A 112:10112–10119PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ligrone
    • 1
  1. 1.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations