Advertisement

Sexual Reproduction

  • Roberto Ligrone
Chapter

Abstract

Sex is a universal property of life encompassing any process that incorporates foreign DNA into functional genomes. Sex is essential for the conservation of biological information across time and, together, is a powerful mechanism of genetic innovation. Unlike prokaryotes, in which sex has no link with reproduction, eukaryotes perform sexual reproduction, an alternation of cellular fusion (syngamy) and meiosis better referred to as meiotic sex. Meiosis possibly evolved in early eukaryotes as a way to reversibly shift from haploidy to diploidy in response to environmental signals. Meiotic sex might then have emerged for maintenance of multi-chromosome, large-sized genomes. The evolution of mating types belonging to either of two sexes/genders prevented fusion of sister cells, thus fostering genetic recombination. Meiotic sex sets strong boundaries between species, at the same time promoting genetic isolation and the emergence of novel species. Species boundary in prokaryotes is conventional. Despite high cost, meiotic sex is almost universal in extant eukaryotes and was most likely present in the last common ancestor.

References

  1. Borgeaud S et al (2015) The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67PubMedPubMedCentralCrossRefGoogle Scholar
  2. Boschetti C et al (2011) Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae. J Exp Biol 214:59–68PubMedCrossRefGoogle Scholar
  3. Bowman JL et al (2016) Evolution in the cycles of life. Annu Rev Genet 50:6.1–6.22CrossRefGoogle Scholar
  4. Brown RC, Lemmon BE (1997) The quadripolar microtubule system in lower land plants. J Plant Res 110:93–106PubMedCrossRefGoogle Scholar
  5. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion system. Nat Rev Microbiol 1:137–148PubMedCrossRefGoogle Scholar
  6. Cavalier-Smith T (2002) Origins of the machinery of recombination and sex. Heredity 88:125–141PubMedCrossRefGoogle Scholar
  7. Cavalier-Smith T (2007) Concept of a bacterium still valid in prokaryote debate. Nature 446:257PubMedCrossRefGoogle Scholar
  8. Cavalier-Smith T (2010) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 5:6. http://www.biology-direct.com/content/5/1/7 CrossRefGoogle Scholar
  9. Cohan FM (2006) Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philos Trans R Soc B 361:1985–1996CrossRefGoogle Scholar
  10. Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386.  https://doi.org/10.1016/j.cub.2007.03.032 PubMedCrossRefGoogle Scholar
  11. Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  12. de la Cruz F et al (2010) Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34:18–40PubMedCrossRefGoogle Scholar
  13. De Loof (2018) Only two sex forms but multiple gender variants: how to explain? Commun Integr Biol 11:e1427399.  https://doi.org/10.1080/19420889.2018.1427399 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dijksoorn L, Ursing BM, Ursing JB (2000) Strain, clone and species: comments on three basic concepts in bacteriology. J Med Microbiol 49:397–401CrossRefGoogle Scholar
  15. Gardner A, Alpedrinha J, West SA (2012) Haplodiploidy and the evolution of eusociality: split sex ratios. Am Nat 179:240–256PubMedCrossRefGoogle Scholar
  16. Goodenough U, Heitman J (2014) Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol 6:a016154.  https://doi.org/10.1101/cshperspect.a016154 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Greiner S, Sobanski J, Bock R (2014) Why are most organelle genomes transmitted maternally? BioEssays 37:80–94PubMedPubMedCentralCrossRefGoogle Scholar
  18. Griffiths A et al (2000) An introduction to genetic analysis, 7th edn. WH Freeman, New York. Accessible at: https://www.ncbi.nlm.nih.gov/books/NBK21760/ Google Scholar
  19. Gross J, Bhattacharya D (2010) Uniting sex and eukaryote origins in an emerging oxygenic world. Biol Direct 5:53. http://www.biology-direct.com/content/5/1/53 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hespeels B et al (2014) Gateway to genetic exchange? DNA double-strand breaks in the bdelloid rotifer Adineta vaga submitted to desiccation. J Evol Biol 27:1334–1345PubMedCrossRefGoogle Scholar
  21. Hoff G et al (2018) Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci Rep 8:5272.  https://doi.org/10.1038/s41598-018-23622-w PubMedPubMedCentralCrossRefGoogle Scholar
  22. Irwin DE, Irwin JH, Price TD (2001) Ring species as bridges between microevolution and speciation. Genetica 112–113:223–243PubMedPubMedCentralCrossRefGoogle Scholar
  23. Johnston JG et al (2015) Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. eLife 4:e07464.  https://doi.org/10.7554/eLife.07464 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Krebs JE, Goldstein ES, Kilpatrick ST (2017) Lewin’s genes XII. Jones and Bartlett Publishers, BurlingtonGoogle Scholar
  25. Ku C et al (2015) Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A 112:10139–10146PubMedPubMedCentralCrossRefGoogle Scholar
  26. Lane N (2015) The vital question. Why is life the way it is? Profile Books Ltd, LondonGoogle Scholar
  27. Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25(3):107–110PubMedCrossRefGoogle Scholar
  28. Lively CM (2010) Parasite virulence, host life history, and the costs and benefits of sex. Ecology 91:3–6PubMedCrossRefGoogle Scholar
  29. Long M et al (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875PubMedCrossRefGoogle Scholar
  30. Maynard-Smith J, Szathmàry E (1995) The origins of life. From the birth of life to the origin of language. Oxford University Press, OxfordGoogle Scholar
  31. Medini C et al (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594.  https://doi.org/10.1016/j.gde.2005.09.006 PubMedCrossRefGoogle Scholar
  32. Mira A et al (2010) The bacterial pan-genome: a new paradigm in microbiology. Int Microbiol 13:45–57PubMedGoogle Scholar
  33. Ohkura H (2015) Meiosis: an overview of key differences from mitosis. Cold Spring Harb Perspect Biol 7:a0158.  https://doi.org/10.1101/cshperspect.a015859 CrossRefGoogle Scholar
  34. Otto SP, Gerstein AC (2008) The evolution of haploidy and diploidy. Curr Biol 18:R1121–R1124.  https://doi.org/10.1016/j.cub.2008.09.039 PubMedCrossRefGoogle Scholar
  35. Perrin N (2012) What uses are mating types? The “developmental switch” model. Evolution 66:947–956PubMedCrossRefGoogle Scholar
  36. Prasad Narra H, Ochman H (2006) Of what use is sex to bacteria? Curr Biol 16:R705–R710CrossRefGoogle Scholar
  37. Qiu Y-L, Taylor AB, McManus HA (2012) Evolution of the life cycle in land plants. J Syst Evol 50:171–194CrossRefGoogle Scholar
  38. Radzvilavicius AL et al (2016) Selection for mitochondrial quality drives evolution of the germline. PLoS Biol 14:e2000410.  https://doi.org/10.1371/journal.pbio.2000410 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ramesh MA, Malik SB, Logsdon JM Jr (2005) A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol 15:185–191PubMedGoogle Scholar
  40. Redfield RJ (2001) Do bacteria have sex? Nat Rev Genet 2:634–639PubMedCrossRefGoogle Scholar
  41. Ricci C, Fontaneto D (2009) The importance of being a bdelloid: ecological and evolutionary consequences of dormancy. Ital J Zool 76:240–249CrossRefGoogle Scholar
  42. Ridley M (2004) Evolution. Blackwell Publishing, OxfordGoogle Scholar
  43. Robert JS, Baylis F (2003) Crossing species boundaries. Am J Bioeth 3:1–13PubMedCrossRefGoogle Scholar
  44. Rocha EPC (2003) Recombination in bacterial genomes and its consequences: from duplications to genome reduction. Genome Res 13:1123–1132PubMedPubMedCentralCrossRefGoogle Scholar
  45. Rocha EPC (2016) Using sex to cure the genome. PLoS Biol 14:e1002417.  https://doi.org/10.1371/journal.pbio.1002417 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Rogozin IB et al (2012) Origin and evolution of spliceosomal introns. Biol Direct 7:11. http://www.biology-direct.com/content/7/1/11 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Roze D, Rousset F, Michalakis Y (2005) Germline bottlenecks, biparental inheritance and selection on mitochondrial variants: a two-level selection model. Genetics 170:1385–1399PubMedPubMedCentralCrossRefGoogle Scholar
  48. Shapiro BJ, Polz MF (2015) Microbial speciation. Cold Spring Harb Perspect Biol 7:a018143PubMedPubMedCentralCrossRefGoogle Scholar
  49. Shatilovich A, Stoupin D, Rivkina E (2015) Ciliates from ancient permafrost: assessment of cold resistance of the resting cysts. Eur J Protistol 51:230–240PubMedCrossRefGoogle Scholar
  50. Shimamura M, Mineyuki Y, Deguchi H (2003) A review of the occurrence of monoplastidic meiosis in liverworts. J Hattori Bot Lab 94:179–186Google Scholar
  51. Silverman et al (2012) Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66:453–472PubMedPubMedCentralCrossRefGoogle Scholar
  52. Stein KK, Primakoff P, Myles D (2004) Sperm-egg fusion: events at the plasma membrane. J Cell Sci 117:6269–6274PubMedCrossRefGoogle Scholar
  53. Subramanian VV, Hochwagen A (2014) The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 6:a016675PubMedPubMedCentralCrossRefGoogle Scholar
  54. Szöllősi GJ, Derényi I, Vellai T (2007) The maintenance of sex in bacteria is ensured by its potential to reload genes. Genetics 174:2173–2180CrossRefGoogle Scholar
  55. Takeuchi N, Kaneko K, Koonin EV (2014) Horizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivision. G3 (Bethesda) 4:325–339CrossRefGoogle Scholar
  56. Tettelin H (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 12:472–477CrossRefGoogle Scholar
  57. Vijg J (2014) Aging genomes: a necessary evil in the logic of life. BioEssays 36:282–292PubMedPubMedCentralCrossRefGoogle Scholar
  58. Wilson CG, Sherman PW (2013) Spatial and temporal escape from fungal parasitism in natural communities of anciently asexual bdelloid rotifers. Proc R Soc B 280:20131255.  https://doi.org/10.1098/rspb.2013.1255 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ligrone
    • 1
  1. 1.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations