Advertisement

The Birth of Life

  • Roberto Ligrone
Chapter

Abstract

Life was most likely present on Earth as early as 3.5 GYA and probably made its first appearance around 4 GYA. Alkaline hydrothermal vents discovered in 2000 are presently considered a likely setting for the origin of life because they could provide organic matter, chemical disequilibria and compartmentation. Simulation experiments show that the synthesis of simple organic molecules from CO2 and H2 and of peptides from free amino acids is thermodynamically favoured under hydrothermal vent conditions. Abiotic synthesis of nucleotides and RNA is more problematic due to intrinsic instability of RNA and ribose under alkaline conditions. Association with abiotic peptides might have stabilized abiotic RNA, leading to the emergence of self-replicating ribonucleoprotein complexes (RNPs). It is suggested that a crucial step towards life was the appearance of “protoribosomes”, viz. RNPs capable of making peptides with a sequence determined by cognate RNAs under the rules of a primordial genetic code, and “protoviruses”, viz. RNPs that replicated RNA templates from free nucleotides under the rules of base complementarity. Although the two classes of RNPs most likely evolved independently, they established stable associations by moving with water currents and binding to peptide-mineral protomembranes in hydrothermal vents. Protoribosomes and protoviruses were ancestral to ribosomes and chromosomes, respectively. Incorporation of polar lipids into protomembranes produced biological membranes. DNA replaced RNA as a more stable repository of genetic information at a very early stage of evolution. Chemiosmosis, the universal energy-harnessing mechanism of life, probably appeared in a rudimentary form at a prebiotic stage, and was certainly operative in LUCA. Early life was probably autotrophic, obtaining organic carbon and energy from carbon dioxide reduction with hydrogen of geochemical origin.

References

  1. Amend JP et al (2013) The energetics of organic synthesis inside and outside the cell. Philos Trans R Soc B 368:20120255.  https://doi.org/10.1098/rstb.2012.0255 CrossRefGoogle Scholar
  2. Baaske P et al (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci U S A 104:9346–9351PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+ -PPases: a tightly membrane-bound family. FEBS Lett 457:527–553PubMedCrossRefGoogle Scholar
  4. Barge LM et al (2014) Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates. Geochim Cosmochim Acta 128:1–12CrossRefGoogle Scholar
  5. Bell EA et al (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112:14518–14521PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bernhardt HS (2012) The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biol Direct 7:23. http://www.biology-direct.com/content/7/1/23 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD, O’Connell M (2018) Translation: the universal structural core of life. Mol Biol Evol 35(8):2065–2076PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589PubMedCrossRefGoogle Scholar
  9. Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci U S A 77:1496–1500PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boucher Y, Kamekura M, Doolittle WF (2004) Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol Microbiol 52:515–527PubMedCrossRefGoogle Scholar
  11. Branciamore S et al (2009) The origin of life: chemical evolution of a metabolic system in a mineral honeycomb? J Mol Evol 69:458–469PubMedCrossRefGoogle Scholar
  12. Branscomb E, Russell MJ (2018a) Frankenstein or a submarine alkaline vent: who is responsible for abiogenesis? Part 1: What is life-that it might create itself? BioEssays.  https://doi.org/10.1002/bies.201700179 CrossRefGoogle Scholar
  13. Branscomb E, Russell MJ (2018b) Why the submarine alkaline vent is the most reasonable explanation for the emergence of life. BioEssays.  https://doi.org/10.1002/bies.201800208 CrossRefGoogle Scholar
  14. Brasier M et al (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B 361:887–902CrossRefGoogle Scholar
  15. Breaker RR (2010) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4:a003566Google Scholar
  16. Bublitz M et al (2011) P-type ATPases at a glance. J Cell Sci 124:2515–2519PubMedCrossRefGoogle Scholar
  17. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113PubMedCrossRefGoogle Scholar
  18. Burcar BT et al (2015) RNA oligomerization in laboratory analogues of alkaline hydrothermal vent systems. Astrobiology 15:509–522PubMedCrossRefGoogle Scholar
  19. Cardoso SSS, Cartwright JHE (2017) On the differing growth mechanisms of black-smoker and Lost City-type hydrothermal vents. Proc R Soc A 473.  https://doi.org/10.1098/rspa.2017.0387 CrossRefGoogle Scholar
  20. Cavalier-Smith T (2001) Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J Mol Evol 53:555–595PubMedCrossRefGoogle Scholar
  21. Cavalier-Smith T (2004) The membranome and membrane heredity in development and evolution. In: Hirt RP, Horner DS (eds) Organelles, genomes and eukaryote phylogeny. Taylor & Francis, London, pp 335–351CrossRefGoogle Scholar
  22. Cavalier-Smith T (2014) The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol 6:a016006PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chan QHS et al (2018) Organic matter in extraterrestrial water-bearing salt crystals. Sci Adv 4:eaao3521.  https://doi.org/10.1126/sciadv.aao3521 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chandra W (2011) Bacterial morphologies supporting cometary panspermia: a reappraisal. Int J Astrobiol 10:25–30CrossRefGoogle Scholar
  25. Chen IA, Walde P (2010) From self-assembled vesicles to protocells. Cold Spring Harb Perspect Biol 2:a002170PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chumachenko NV, Novikov Y, Yarus M (2009) Rapid and simple ribozymic aminoacylation using three conserved nucleotides. J Am Chem Soc 131:5257–5263PubMedPubMedCentralCrossRefGoogle Scholar
  27. Colín-García M et al (2016) Hydrothermal vents and prebiotic chemistry: a review. Bol Soc Geol Mex 68:599–620Google Scholar
  28. Da Silva L, Maurel MC, Deamer DJ (2015) Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. Mol Evol 80:86–97CrossRefGoogle Scholar
  29. Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  30. Deamer D, Weber AL (2010) Bioenergetics and life’s origins. Cold Spring Harb Perspect Biol 2:a004929PubMedPubMedCentralCrossRefGoogle Scholar
  31. Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721.  https://doi.org/10.1007/s00239-003-2522-6 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dobson CM (2004) Chemical space and biology. Nature 432:824–828PubMedCrossRefGoogle Scholar
  33. Dodd MS et al (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64PubMedCrossRefGoogle Scholar
  34. du Plessis DJF, Nouwen N, Driessen AJM (2011) The Sec translocase. Biochim Biophys Acta 1808:851–865PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ducluzeau A-L et al (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34:9–15PubMedCrossRefGoogle Scholar
  36. Ducluzeau A-L et al (2014) Free energy conversion in the LUCA: quo vadis? Biochim Biophys Acta 1837:982–988PubMedCrossRefGoogle Scholar
  37. Ettwig KF et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedCrossRefGoogle Scholar
  38. Facchiano A, Di Giulio M (2018) The genetic code is not an optimal code in a model taking into account both the biosynthetic relationships between amino acids and their physicochemical properties. J Theor Biol 459:45–51PubMedCrossRefGoogle Scholar
  39. Ferré D’Amaré AR, Scott WG (2010) Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol 2:a003574PubMedPubMedCentralGoogle Scholar
  40. Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16PubMedCrossRefGoogle Scholar
  41. Forterre P, Filée J, Myllykallio H (2004) Origin and evolution of DNA and DNA replication machineries. In: The genetic code and the origin of life. Springer, BostonGoogle Scholar
  42. Fox GE (2010) Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol 2:a003483PubMedPubMedCentralGoogle Scholar
  43. Glansdorff N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29.  https://doi.org/10.1186/1745-6150-3-29 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grew ES, Bada JL, Hazen RM (2012) Borate minerals and origin of the RNA world. Orig Life Evol Biosph 41:307–316CrossRefGoogle Scholar
  45. Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc B 361:1007–1022.  https://doi.org/10.1098/rstb.2006.1841 CrossRefGoogle Scholar
  46. Hannington MD, De Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Economic geology 100th anniversary volume, pp 111–141Google Scholar
  47. Haroon MF et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–750PubMedCrossRefGoogle Scholar
  48. Hazen RM (2017) Chance, necessity and the origins of life: a physical sciences perspective. Phil Trans R Soc A 375:20160353.  https://doi.org/10.1098/rsta.2016.0353 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Herschy B et al (2014) An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol 79:213–227PubMedPubMedCentralCrossRefGoogle Scholar
  50. Higgs PG (2016) The effect of limited diffusion and wet-dry cycling on reversible polymerization reactions: implications for prebiotic synthesis of nucleic acids. Life 6:24.  https://doi.org/10.3390/life6020024 CrossRefPubMedCentralGoogle Scholar
  51. Hilário A et al (2011) New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS One 6:e16309.  https://doi.org/10.1371/journal.pone.0016309 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hiller DA, Strobel SA (2011) The chemical versatility of RNA. Philos Trans R Soc B 366:2929–2935CrossRefGoogle Scholar
  53. Jackson JB (2017) Natural pH gradients in hydrothermal alkali vents were unlikely to have played a role in the origin of life. J Mol Evol 83:1–11CrossRefGoogle Scholar
  54. Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jékely G (2006) Did the last common ancestor have a biological membrane? Biol Direct 1:35.  https://doi.org/10.1186/1745-6150-1-35 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Junge W, Nelson N (2015) ATP synthase. Annu Rev Biochem 84:631–657PubMedCrossRefGoogle Scholar
  57. Kelley DS et al (2001) An off-axis hydrothermal vent field near the mid-Atlantic ridge at 30 degrees N. Nature 412:145–149PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kelley DS et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434PubMedCrossRefGoogle Scholar
  59. Kitadai N, Maruyama S (2017) Origins of building blocks of life: a review. Geosci Front 9:1117–1153CrossRefGoogle Scholar
  60. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedCrossRefGoogle Scholar
  61. Koga Y (2014) From promiscuity to the lipid divide: on the evolution of distinct membranes in Archaea and Bacteria. J Mol Evol 78:234–242PubMedCrossRefGoogle Scholar
  62. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654PubMedCrossRefGoogle Scholar
  63. Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111PubMedPubMedCentralCrossRefGoogle Scholar
  64. Koonin EV, Novozhilov AS (2017) Origin and evolution of the universal genetic code. Annu Rev Genet 51:45–62PubMedCrossRefGoogle Scholar
  65. Kovacs NA et al (2017) Frozen in time: the history of proteins. Mol Biol Evol.  https://doi.org/10.1093/molbev/msx086 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kühlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:89.  https://doi.org/10.1186/s12915-015-0201-x CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lake JA et al (2009) Genome beginnings: rooting the tree of life. Philos Trans R Soc B 364:2177–2185CrossRefGoogle Scholar
  68. Laland K, Matthews B, Feldman MW (2016) An introduction to niche construction theory. Evol Ecol 30:191–202PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lambowitz AM, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3:a003616PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lane N (2015) The vital question. Why is life the way it is? Profile Books Ltd, LondonGoogle Scholar
  71. Lane N (2017) Proton gradients at the origin of life. BioEssays 39:1600217.  https://doi.org/10.1002/bies.201600217 CrossRefGoogle Scholar
  72. Lane N, Martin WF (2012) The origin of membrane bioenergetics. Cell 151:1406–1416PubMedCrossRefGoogle Scholar
  73. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32:271–280.  https://doi.org/10.1002/bies.200900131 CrossRefPubMedGoogle Scholar
  74. Lang SQ et al (2010) Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta 74:941–952CrossRefGoogle Scholar
  75. Lemke KH, Rosenbauer RJ, Bird DK (2009) Peptide synthesis in early earth hydrothermal systems. Astrobiology 9:141–146PubMedCrossRefGoogle Scholar
  76. Lineweaver CH, Chopra A (2012) The habitability of our Earth and other earths: astrophysical, geochemical, geophysical, and biological limits on planet abitability. Annu Rev Earth Planet Sci 40:597–623CrossRefGoogle Scholar
  77. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99PubMedCrossRefGoogle Scholar
  78. Lombard J, López-García P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515PubMedCrossRefGoogle Scholar
  79. Mansy SS (2010) Membrane transport in primitive cells. Cold Spring Harb Perspect Biol 2:a002188PubMedPubMedCentralCrossRefGoogle Scholar
  80. Martin WF (2011) Early evolution without a tree of life. Biol Direct 6:36. http://www.biology-direct.com/content/6/1/36 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Martin WF, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc B 358:59–85CrossRefGoogle Scholar
  82. Martin WF, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc B 367:1887–1925CrossRefGoogle Scholar
  83. Martin WF, Sousa FL (2016) Early microbial evolution: the age of anaerobes. Cold Spring Harb Perspect Biol 8:a018127.  https://doi.org/10.1101/cshperspect.a018127 CrossRefPubMedCentralPubMedGoogle Scholar
  84. Mast CB et al (2013) Escalation of polymerization in a thermal gradient. Proc Natl Acad Sci U S A 110:8030–8035PubMedPubMedCentralCrossRefGoogle Scholar
  85. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  86. McGlynn SE, Kanik I, Russell MJ (2012) Peptide and RNA contributions to iron-sulphur chemical gardens as life’s first inorganic compartments, catalysts, capacitors and condensers. Phil Trans R Soc A 370:3007–3022PubMedCrossRefGoogle Scholar
  87. Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529PubMedCrossRefGoogle Scholar
  88. Milner-White EJ, Russell MJ (2011) Functional capabilities of the earliest peptides and the emergence of life. Genes 2:671–688PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mojzsis SJ et al (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefGoogle Scholar
  90. Monod J (1971) Chance and necessity: an essay on the natural philosophy of modern biology. Alfred A. Knopf, New YorkGoogle Scholar
  91. Moore PB, Steitz TA (2010) The roles of RNA in the synthesis of protein. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a003780 Google Scholar
  92. Mulkidjanian AY et al (2008) Evolutionary primacy of sodium bioenergetics. Biol Direct 3:13.  https://doi.org/10.1186/1745-6150-3-13 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34:206–215PubMedPubMedCentralCrossRefGoogle Scholar
  94. Müller V, Grüber G (2003) ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 60:474–494PubMedCrossRefGoogle Scholar
  95. Nakanishi-Matsui M, Futai M (2008) Stochastic rotational catalysis of proton pumping F-ATPase. Philos Trans R Soc B 363:2135–2142CrossRefGoogle Scholar
  96. Nam I, Nam HG, Zare RN (2018) Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proc Natl Acad Sci U S A 115:36–40PubMedCrossRefGoogle Scholar
  97. Nelson DL, Cox MM (2017) Lehninger principles of biochemistry. Freeman and Company, New YorkGoogle Scholar
  98. Nitschke W, Russell MJ (2013) Beating the acetyl coenzyme A-pathway to the origin of life. Philos Trans R Soc B 368:20120258.  https://doi.org/10.1098/rstb.2012.0258 CrossRefGoogle Scholar
  99. Nitschke W et al (2013) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim Biophys Acta 1827:871–881PubMedCrossRefGoogle Scholar
  100. Nyathi Y, Wilkinson BM, Pool MR (2013) Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 1833:2392–2402PubMedCrossRefGoogle Scholar
  101. Ohtomo Y et al (2013) Evidence for biogenic graphite in early Archean Isua metasedimentary rocks. Nat Geosci 7:25–28CrossRefGoogle Scholar
  102. Onstott TC et al (2014) Does aspartic acid racemization constrain the depth limit of the subsurface biosphere. Geobiology 12:1–19PubMedCrossRefGoogle Scholar
  103. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266PubMedCrossRefGoogle Scholar
  104. Peretò J, Lòpes-Garcìa P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 29:469–477PubMedCrossRefGoogle Scholar
  105. Petigura EA et al (2013) Prevalence of Earth-size planets orbiting Sun-like stars. Proc Natl Acad Sci U S A 110:19273–19278PubMedPubMedCentralCrossRefGoogle Scholar
  106. Petrov AS et al (2015) History of the ribosome and the origin of translation. Proc Natl Acad Sci U S A 112:15396–15401PubMedPubMedCentralCrossRefGoogle Scholar
  107. Poehlein A et al (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7:e33439.  https://doi.org/10.1371/journal.pone.0033439 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Proskurowski G et al (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319:604–607PubMedCrossRefGoogle Scholar
  109. Robertson MP, Joyce GF (2012) The origins of the RNA world. Cold Spring Harb Perspect Biol 4:a003608.  https://doi.org/10.1101/cshperspect.a003608 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rosing MT (1999) 13C-depleted carbon microparticles in 3700 Ma Sea-floor sedimentary rocks from West Greenland. Science 283:674–676PubMedCrossRefGoogle Scholar
  111. Ross DS (2018) It is neither Frankenstein nor a submarine alkaline vent, it is just the second law. BioEssays.  https://doi.org/10.1002/bies.201800149 CrossRefGoogle Scholar
  112. Russell MJ, Hall HJ (2006) The onset and early evolution of life. Geol Soc Am Bull 198:1–32Google Scholar
  113. Russell MJ, Nitschke W (2017) Methane: fuel or exhaust at the emergence of life? Astrobiology 17:1053–1067PubMedPubMedCentralCrossRefGoogle Scholar
  114. Russell MJ, Hall HJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355–371PubMedCrossRefGoogle Scholar
  115. Russell MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Philos Trans R Soc B 368:20120254.  https://doi.org/10.1098/rstb.2012.0254 CrossRefGoogle Scholar
  116. Saladino R et al (2012a) From the one-carbon amide formamide to RNA all the steps are prebiotically possible. Biochimie 94:1451–1456PubMedCrossRefGoogle Scholar
  117. Saladino R et al (2012b) Formamide and the origin of life. Phys Life Rev 9:84–104PubMedCrossRefGoogle Scholar
  118. Schlacht A et al (2014) Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol 6:a016048PubMedPubMedCentralCrossRefGoogle Scholar
  119. Schoepp-Cothenet B et al (2012) The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Sci Rep 2:263.  https://doi.org/10.1038/srep00263 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Schoepp-Cothenet B et al (2013) On the universal core of bioenergetics. Biochim Biophys Acta 1827:79–93PubMedCrossRefGoogle Scholar
  121. Schönheit P, Buckel W, Martin WF (2016) On the origin of heterotrophy. Trends Microbiol 24:12–25PubMedCrossRefGoogle Scholar
  122. Schopf JW (2006) Fossil evidence of Archean life. Philos Trans R Soc B 361:869–885.  https://doi.org/10.1098/rstb.2006.1834 CrossRefGoogle Scholar
  123. Schopf JW et al (2017) An anaerobic ∼3400 Ma shallow-water microbial consortium: presumptive evidence of Earth’s Paleoarchean anoxic atmosphere. Precambrian Res 299:309–318CrossRefGoogle Scholar
  124. Schouten S et al (2007) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Appl Environ Microbiol 73:6181–6191PubMedPubMedCentralCrossRefGoogle Scholar
  125. Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a002212 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Schulz F et al (2017) Towards a balanced view of the bacterial tree of life. Microbiome 5:140.  https://doi.org/10.1186/s40168-017-0360-9 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Sengupta S, Aggarwal N, Bandhu AV (2014) Two perspectives on the origin of the standard genetic code. Orig Life Evol Biosph 44:287–291PubMedCrossRefGoogle Scholar
  128. Seufferheld M et al (2011) Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct 6:50.  https://doi.org/10.1186/1745-6150-6-50 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Shimada H, Yamagishi A (2011) Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50:4114–4120PubMedCrossRefGoogle Scholar
  130. Skoblikow NE, Zimin AA (2018) Mineral grains, dimples, and hot volcanic organic streams: dynamic geological backstage of macromolecular evolution. J Mol Evol 86:172–183PubMedCrossRefGoogle Scholar
  131. Sleep NH, Bird DK, Pope EC (2011) Serpentinite and the dawn of life. Philos Trans R Soc B 366:2857–2869CrossRefGoogle Scholar
  132. Smith TF et al (2008) The origin and evolution of the ribosome. Biol Direct 3:16.  https://doi.org/10.1186/1745-6150-3-16 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sojo V, Pomiankowski A, Lane N (2014) A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol 12(8):e1001926.  https://doi.org/10.1371/journal.pbio.1001926 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sojo V et al (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16:181–197PubMedCrossRefGoogle Scholar
  135. Sousa FL et al (2013) Early bioenergetic evolution. Philos Trans R Soc B 368:20130088.  https://doi.org/10.1098/rstb.2013.0088 CrossRefGoogle Scholar
  136. Spier F (2010) Big history and the future of humanity. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  137. Sterelny K (2011) Evolvability reconsidered. In: Calcott B, Sterelny K (eds) The major transitions in evolution revisited. MIT Press, Cambridge, MA, pp 83–100CrossRefGoogle Scholar
  138. Sugitani K et al (2015) Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13:507–521PubMedCrossRefGoogle Scholar
  139. Sutherland JD (2010) Ribonucleotides. Cold Spring Harb Perspect Biol 2:a005439PubMedPubMedCentralCrossRefGoogle Scholar
  140. Toro E, Shapiro L (2010) Bacterial chromosome organization and segregation. Cold Spring Harb Perspect Biol 2:a000349.  https://doi.org/10.1101/cshperspect.a000349 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Valas RE, Bourne PE (2011) The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6:16.  https://doi.org/10.1186/1745-6150-6-16 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wacey D (2010) Stromatolites in the ~3400 Ma Strelley Pool formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiology 10:381–395PubMedCrossRefGoogle Scholar
  143. Wacey D et al (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702CrossRefGoogle Scholar
  144. Wächtershäuser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10:207–210CrossRefGoogle Scholar
  145. Wächtershäuser G (2003) From pre-cells to Eukarya – a tale of two lipids. Mol Microbiol 47:13–22PubMedCrossRefGoogle Scholar
  146. Weiss MC et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol.  https://doi.org/10.1038/nmicrobiol.2016.116
  147. West T et al (2017) The origin of heredity in protocells. Philos Trans R Soc B 372:20160419.  https://doi.org/10.1098/rstb.2016.0419 CrossRefGoogle Scholar
  148. Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3:a003707PubMedPubMedCentralCrossRefGoogle Scholar
  149. Williams TA et al (2017) Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci U S A.  https://doi.org/10.1073/pnas.1618463114 CrossRefGoogle Scholar
  150. Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2:14.  https://doi.org/10.1186/1745-6150-2-14 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Wong ML et al (2017) Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 17.  https://doi.org/10.1089/ast.2016.1473 PubMedCrossRefGoogle Scholar
  152. Woodson SA (2005) Structure and assembly of group I introns. Curr Opin Struct Biol 15:324–330PubMedCrossRefGoogle Scholar
  153. Yarus M (2011) Getting past the RNA world: the initial darwinian ancestor. Cold Spring Harb Perspect Biol 3:a003590PubMedPubMedCentralCrossRefGoogle Scholar
  154. Yoice GF (2009) Evolution in an RNA world. Cold Spring Harb Symp Quant Biol 74:17–23CrossRefGoogle Scholar
  155. Yu H, Zhang S, Chaput JC (2012) Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat Chem 4:183–187PubMedCrossRefGoogle Scholar
  156. Yutin N et al (2012) Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7:e36972PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ligrone
    • 1
  1. 1.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations